Programmer’s Guide

Monitor Client Library
12.5

DOCUMENT ID: 32865-01-1250-01
LAST REVISED: May 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in thisdocument is subject to change without notice. The software described herein is furnished
under alicense agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated inany form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Anayzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EM S, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, |mpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnayst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server I nterfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financia,
SyberAssist, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, Transact-SQL, Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK RuntimeKit for UniCode, Viewer, Visual Components, Visual Speller, Visual Writer,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL., Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to therestrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

ADOUL THIS BOOK ...eeiie ittt ettt et e ettt e e ettt e e e s et e e e ste e e e ambaeaeanbeeeeaneeaaan Xi
CHAPTER 1 Getting started with Monitor Client Librarycccccccceeeeiiiiiiiinnnnen. 1
OVEBIVIBW ...ttt ettt e e et e e et e e e e ne e e e e ennneaeaas 1
What is Adaptive Server Enterprise Monitorcccccveeeeeeiiiivennnnnn. 1
Adaptive Server Enterprise Monitor components...................... 2
Adaptive Server Enterprise Monitor architecture............c.......... 2
Writing a Basic Monitor Client Library program..........ccccceevivvvennennn. 4
Application 10gIiC flOWuvvviiiiiiiii 1 5
Step 1: define error handling ..o, 5
Step 2: CONNECE L0 & SEIVEN .oooiiiiieiieieeeeeeeeeeeeeeeee 6
StEP 3: CreALE @ VIEW ...ivviieeeiiiiiiiiiiee e e ettt e e e siivaee e e e e e 7
Step 4: create filters ... 10
Step 5: Set alarmS ...vvviieie e 11
Step 6: request performance data and process results........... 12
Step 7: close and deallocate connections...........cccccceeeeeeineee. 13
Playing back recorded data.............cccuvvveeieeiiiiiiiiiinie e, 13

A sample Monitor Client Library program............cccccceeeeiiiiiinenneenn. 14
EXampPle Programoccvuviiiieeiiiiiiiiiiee e 14
CHAPTER 2 Data Items and Statistical TYPES ...ccoeeviriiiiiiiiiiiiieeeeee e 43
OVEIVIEW ittt e e e e e e e e e e nnaee e 43
Result and key data itemScooriiiiiiiiiiie e 43
Data itemMS and VIEWSccoviiiiiiiiiiiiee e 44
Rows with no data versus no rows in VIEWSc.cccveeeneen. 45
Server-level Status.........ccvveoiiiiiiiiic e 45
Combining data iteMS........cooiiiiiiiiee e 46
Result and key combinationscccccvveeeeiiiiiiiiinee e 46
COoNNECHION SUMMANTES......ciiiiiiiieiiiiiee ettt e e 46
Current statement and application name data items............... 46
Data item definitionNS..........ooiiiiiiii i a7
Deciphering the names of data items............cccccvevveeer i, 48
SMC_NAME_ACT_STP_DB_ID ...ovtiiiiiiieiiiiiie e 49

Contents

SMC_NAME_ACT_STP_DB_NAMEevvevrreesrreresresrnrenne. 50
SMC_NAME_ACT_STP_ID «.eeeoeeeeeeeeeeeeeereeeeeseeeeseeeseneenes 50
SMC_NAME_ACT_STP_NAME w...cveeveeeeeeeeeeeseeeeseeereseenes 51
SMC_NAME_ACT_STP_OWNER_NAME.........ovovverrerrerreen.. 51
SMC_NAME_APPLICATION_NAMEovvoveeeeeeeeeeeeeeseeneene. 52
SMC_NAME_APP_EXECUTION_CLASSoovoovererererrerenne. 53
SMC_NAME_BLOCKING_SPID ...eoeeeveeeeeeeeeeeseeeeeeeeeneenes 53
SMC_NAME_CONNECT _TIME.......oeeveeeeeeeeeeeseee s 54
SMC_NAME_CPU_BUSY _PCT ..veoeeeeeeeeeeeeeeeeeeeeeeeeeseenes 54
SMC_NAME_CPU_PCT oo eeveeeeerseeeseseeseenes 55
SMC_NAME_CPU_TIME ...eoeeveeeeereeeeeeeeeeeeeeseseeesesseseenes 55
SMC_NAME_CPU_YIELD .eoeveeeeeeeeeeeeeeeeeeereee s 56
SMC_NAME_CUR_APP_NAME......c..vverieereereeresreeresreeseeenes 56
SMC_NAME_CUR_ENGINEeovoreeeeeeereeeseeereeeeeseeeeseenes 57
SMC_NAME_CUR_EXECUTION_CLASSooovvmeerrerrene, 57
SMC_NAME_CUR_PROC_STATE «..eoovooveeeeeeeeseeeeeeeeseeeneo. 57
SMC_NAME_CUR_STMT_ACT_STP_DB_ID..ovevvveerrerenn.. 58
SMC_NAME_CUR_STMT_ACT_STP_DB_NAME................. 59
SMC_NAME_CUR_STMT_ACT _STP_ID..vveoeeeeeeeeeeereerenne. 59
SMC_NAME_CUR_STMT_ACT_STP_NAME......ooccvvrrrrre.... 60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME......... 60
SMC_NAME_CUR_STMT_ACT_STP_TEXT eeovveeevereernreane. 61
SMC_NAME_CUR_STMT_BATCH_ID...oveeveeeeeeeeeeeeresrerenne. 61
SMC_NAME_CUR_STMT_BATCH_TEXT vvevveveveeereerereane. 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED........... 62
SMC_NAME_CUR_STMT_CONTEXT _ID..veeeevererereeerenreene. 63
SMC_NAME_CUR_STMT_CPU_TIME ...evvoeeeereereereernreene. 63
SMC_NAME_CUR_STMT_ELAPSED _TIME w...ovoovveeveerrenn.. 64
SMC_NAME_CUR_STMT_LINE_NUM ...evveerereeoeeeeesenenne. 64
SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED....... 65
SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED..... 65
SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED........... 65
SMC_NAME_CUR_STMT_NUM «..ooeoeeeoeoeeeeeeeeee e 66
SMC_NAME_CUR_STMT_PAGE_I0.....ovevveeeereeeeesresrenreane. 66
SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ............. 67
SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ........... 67
SMC_NAME_CUR_STMT_PAGE_WRITE ...oveverereereeerrreene. 68
SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT...c.ccco..... 68
SMC_NAME_CUR_STMT_START_TIMEvvvvveeeeeereererenne. 69
SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET............... 69
SMC_NAME_DATA_CACHE_CONTENTIONvvervrrreeen.. 70
SMC_NAME_DATA_CACHE_EFFICIENCYvvoovveeeeerrerenne. 70
SMC_NAME_DATA_CACHE_HIT c..voevoeeeeeeeeeeeeeeeee e, 70
SMC_NAME_DATA_CACHE_HIT PCT oo, 71

Contents

SMC_NAME_DATA_CACHE_ID ... seeseeeneneen 71
SMC_NAME_DATA_CACHE_LARGE_IO_DENIED.............. 72
SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED..... 73
SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED 73
SMC_NAME_DATA_CACHE_MISSooveeveeeereseeesreeseeenennes 74
SMC_NAME_DATA_CACHE_NAMEovooveeeeeeeeesreeeeesennes 74
SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY 75
SMC_NAME_DATA_CACHE_REUSEoovvvvevieeesreeeeerenes 75
SMC_NAME_DATA_CACHE_REUSE_DIRTYovvvvervverens 76
SMC_NAME_DATA_CACHE_REF_AND_REUSE................. 76
SMC_NAME_DATA_CACHE_SIZE c...vooooeoeeeeeeeeeeeee e 77
SMC_NAME_DB_ID oo eeeeseeeseeee s 77
SMC_NAME_DB_NAMEove oo ereseeeseeeeeeseeeens 78
SMC_NAME_DEADLOCK_CNT ..o seeseeeneenees 78
SMC_NAME_DEMAND_LOCK ... veeevereeeeeereesesseeseesereneesens 79
SMC_NAME_DEV._HIT eovoeeeeeeeeeeeeeeeeeee e eseenenn 79
SMC_NAME_DEV_HIT_PCT..oeiveeeeeeeeeeeeeeeeseeeeeseeresssneens 79
SMC_NAME_DEV 10 eeeeeeeeeeeeeeeeeeeseeeeseeeseeeeeeseeseseseen 80
SMC_NAME_DEV_MISSoeeveeeeeeeeeeseeeeseeereereeseeseesesees 80
SMC_NAME_DEV_NAMEovviveeeeeeeseeeeeeeeseseeeseeseeseeeen 81
SMC_NAME_DEV_READ.......oveiveeeeeeereeeeeseeeseeseeeseeseeseeeens 81
SMC_NAME_DEV_WRITE ..o 82
SMC_NAME_ELAPSED _TIME ...voveeeveeeee oo eeeeeee s 82
SMC_NAME_ENGINE_NUMvvooeeeeeeeeeeeeeeeee e 83
SMC_NAME_HOST NAMEovooeeeeeeeeeeeeeeeeeseeeseeeeseeeeene 83
SMC_NAME_KPID oot snee s enenees 84
SMC_NAME_LOCK_CNT .o seeeeeseeenene 84
SMC_NAME_LOCK_HIT_PCT w.ovveveeeeeeeeeeeeseeseeseesreseeeseennes 85
SMC_NAME_LOCK_RESULT w..eovoveeeeeeeeeeeeeeeeseesseseeeneesnes 85
SMC_NAME_LOCK_RESULT_SUMMARYocovvmrrrremrrnres 86
SMC_NAME_LOCK_STATUS w...veveeeeeeeeeeeeeeeeeeeseesseseeeseennes 86
SMC_NAME_LOCK_STATUS_CNT ..ovooeiveeeeereeseeereseeeseennes 87
SMC_NAME_LOCK_TYPE ...cveeveeeeeeereeeeeeeereseeeseeseeseseos 88
SMC_NAME_LOCKS_BEING_BLOCKED_CNTc..coovvvuen.. 88
SMC_NAME_LOCKS_GRANTED_IMMEDoveovveevrreeren, 89
SMC_NAME_LOCKS_GRANTED_WAITEDo.oovververreeren, 90
SMC_NAME_LOCKS_NOT_GRANTED.......oovrveererrrrererennns 90
SMC_NAME_LOG_CONTENTION_PCT ..vooverveereseererereeens 91
SMC_NAME_LOGIN_NAMEoovoooeieeeeeeeeeeeeeee e 91
SMC_NAME_MEM_CODE_SIZE ...vooovooeeeeeeeeeeseeseeeseeseeeneenens 92
SMC_NAME_MEM_KERNEL_STRUCT_SIZE.....cvvviveere., 92
SMC_NAME_MEM_PAGE_CACHE_SIZEo.vvevvverrrreeernnn, 93
SMC_NAME_MEM_PROC_BUFFERc..eveteeresresreseeerennes 93
SMC_NAME_MEM_PROC_HEADERoovvvrvsreesreseeerennns 93

Contents

Vi

SMC_NAME_MEM_SERVER_STRUCT _SIZEcccocvvvenn..... 94
SMC_NAME_MOST_ACT DEV_10 ..o, 94
SMC_NAME_MOST_ACT DEV_NAME.........ccocvvrirrrerrnrnane. 95
SMC_NAME_NET _BYTE 1O 95
SMC_NAME_NET_BYTES_RCVD.....ccooioeeeeeeeseeeeereeerenreane. 96
SMC_NAME_NET_BYTES_SENT ..civeeeeeeeeeeseeeeeeeeeeeeeeane. 96
SMC_NAME_NET_DEFAULT_PKT_SIZE w..oovivviverieereraene. 96
SMC_NAME_NET_MAX_PKT_SIZE ...oooeieeeeereeeeeseereenrnane. 97
SMC_NAME_NET_PKT_SIZE_RCVD....cco.vveeiverereeereeerernene. 97
SMC_NAME_NET_PKT_SIZE_SENT w...ovviviereeeereeeeeeeennene. 97
SMC_NAME_NET_PKTS_RCVDooovoeeieeeeeseeeeeeeeereenene. 98
SMC_NAME_NET_PKTS_SENT....oviroeeeeeereeeeeeeeeeeeeenene. 98
SMC_NAME_NUM_ENGINES........covivrereeeeeereseesreseeennes 99
SMC_NAME_NUM_PROCESSESccc.cvviivseeeeeseeseesrenes 99
SMC_NAME_OBJ_ID ..o 100
SMC_NAME_OBJ_NAMEcc..oeioeeeeeeeeeeeeeeeeee e 101
SMC_NAME_OBJ_TYPE......iouieeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseoe 101
SMC_NAME_OWNER _NAMEcc..cveieeeeeeeeeeeeeeeeeeseeeeeeeene 102
SMC_NAME_PAGE_HIT PCT ..ot 102
SMC_NAME_PAGE_INDEX_LOGICAL_READ 102
SMC_NAME_PAGE_INDEX_PHYSICAL_READ............... 103
SMC_NAME_PAGE_10 ... 104
SMC_NAME_PAGE_LOGICAL_READcc.cvvevrrrereneennnn. 104
SMC_NAME_PAGE_NUM.......oooivoirieeeeeeeeeeeeeeeeeseeeenon 105
SMC_NAME_PAGE_PHYSICAL_READccoovvvrrrreenn. 105
SMC_NAME_PAGE_WRITEovvoirieeeeeeeeeeeee e 106
SMC_NAME_PROC_STATE ...oiveoieeeeeeeeeeeeeeee e 106
SMC_NAME_PROC_STATE_CNT....oveieereeeeeeeseeseeneeeneoe 108
SMC_NAME_SPID......eeoeeeeeeeeeeeeeeeeeeeeee e 108
SMC_NAME_SQL_SERVER_NAME.........ccoriveiuererrenrernnn. 110
SMC_NAME_SQL_SERVER_VERSION.......ccccoosiuriurrereen. 110
SMC_NAME_STP_CPU_TIMEouveieeeeeeeeeeeeeeeseeeeeeeene 110
SMC_NAME_STP_ELAPSED _TIME.......cooivieeeieseereeneenenn. 111
SMC_NAME_STP_EXECUTION_CLASSc.ceovvverrrrnn. 111
SMC_NAME_STP_HIT PCT ..o 112
SMC_NAME_STP_LINE_NUMoviomireeieeeeeeeneereeenn 112
SMC_NAME_STP_LINE_TEXT c.eveeveeeeeeeeeeeeeseeeeseseeenone 113
SMC_NAME_STP_LOGICAL_READc..covovviierreresrennnn. 113
SMC_NAME_STP_NUM_TIMES_EXECUTED 113
SMC_NAME_STP_PHYSICAL_READccoovveeiuereereeneennnn. 114
SMC_NAME_STP_STMT_NUMcooomimirmeeieeeeeeeeseeeeeeeene 114
SMC_NAME_THREAD_EXCEEDED_MAX......cccovevivnrereen. 115
SMC_NAME_THREAD_EXCEEDED_MAX_PCT 115
SMC_NAME_THREAD_MAX_USED ...cc.vvmeveeirereereenrernnn. 116

Chapter

SMC_NAME_TIME_WAITED_ON_LOCK........ccocveeiiiiiaanne 116
SMC_NAME_TIMESTAMPooiiiiiiiiiiiie e 116
SMC_NAME_TIMESTAMP_DATIMocoiiiiiiiiiiieieeiieeee e 117
SMC_NAME_XACT ..ttt 117
SMC_NAME_XACT_DELETE.......ccciiieiieee e 118
SMC_NAME_XACT_DELETE_DEFERRED...........cccveennee. 118
SMC_NAME_XACT_DELETE_DIRECTcccccoviiiieiiiiieeee 119
SMC_NAME_XACT_INSERT......ootiiiiiiiiiiiie e 119
SMC_NAME_XACT_INSERT_CLUSTERED...........ccc0eeennee. 119
SMC_NAME_XACT_INSERT_HEAPcocoiiiiiiiiieeiiieeeee 120
SMC_NAME_XACT_SELECToiiiiiiiiieiiiieee e 120
SMC_NAME_XACT_UPDATEooiiiiiiieeiiiie e 121
SMC_NAME_XACT_UPDATE_DEFERREDccceeevnn..e. 121
SMC_NAME_XACT_UPDATE_DIRECTccceiiiieeiiieaeene 121
SMC_NAME_XACT_UPDATE_EXPENSIVE...........cccceeennuee. 122
SMC_NAME_XACT_UPDATE_IN_PLACE.......ccccccovevreennnnn. 122
SMC_NAME_XACT_UPDATE_NOT_IN_PLACE 123
CHAPTER 3 Monitor Client Library FUNCLIONSccevvviiiiiiiieiecee e 125
TRFEAUS ..eeviiiee i 126
Error handlingooovvviiieeeic e 127
Error NandIer.........oooiviiiie e 127
Callback fUNCLIONcooiiiiiieee e 128
SIMC_ClOSE....ci ittt e e e e e e 130
SMC_CONNECE_AIIOCcciiiiiiiiee e 131
SMC_CONNECE_AIOP vevieeeiiiiiiiiiee e e ettt e e e e e e e e e e a e e e e e e 132
S g a (o oo] o] o (=T o = PP 134
SIMC_CONNECE_PIOPS -.iieeieeeiiia e e e e eeettia e e e e e e eeeati e e e e e eeeeannn e aaaeeeees 135
SMC_Create_alarmM_EX ...cuuuiiieeeeieiiiieiiee e e e eeiiire e e e e e e ssireaeae e e e e 140
SMC_Create_filter ..o 144
smc_create_playback _SesSion.........ccccccceeiiiiiiiiiiiiieeen 148
smc_create_recording_SESSION.......ccuuueviieeriiiiiiiiie e 154
SIMC_CIEALE_VIBW ...eiiieeiiiiiiiiiiee e e ettt e e e e e s ettt e e e e s et eae e e e aanne 156
SMC_ArOP_@IAIMN ...eeiiii e 159
SMC_ArOP_fIleF ..uvvviiiii e 160
SIMC_ArOP_VIBW ...uviiiiieeiiiiiieiiee e e e sttt e e e e e sttt e e e e s e snnbaeeeaeeeeannne 161
smc_get_ command_iNfOcoeeviiiiiiiiiiee e 162
smc_get_dataitem_tYPeuvveveiieeiiiiiieeee e 165
smc_get_dataitem_ValUe............ccoovuvviieiieeii e 167
SMC_QET_TOW_COUNT ..eeviiiiiiiiiiiiiiieeeeeeeeee ettt 168
SMC_QEt VErSION_StiNG.....uvveieeeeiiiiiiiiieeeeeeiiirie e e e e e esnrreaee e e e 170
smc_initiate_playbackccccoeiiiiiiiiiieic e 170
SMC_iNitiate_reCOrdiNg.........cueveeviiiiiiiiiieee et 172
SMC_IEfTESN_BX .uuviiiiiiiiiiiiiiiiiiiiiieieeeeee e aaeeeaeaes 173

Vii

CHAPTER 4

CHAPTER 5

APPENDIX A

viii

smc_terminate_playback..........ccoccviiiiiiiiiiii e 174

SMC_terminate_reCOrdiNGueeeeeeeiurriireeeeeeiiiiiiere e e e e e ssaereeeeeeaeeans 175
Building a Monitor Client Library Application.............c.ccceeeen. 179
Building on UNIX platformscccooeviiiiiiieee e 180
Compiling the application..........cccccoviiiiiiiiiie e 180
Linking the applicationccccooviiiiiiiee e 180
Running the applicationcccooiiiiiieeiinniiee e, 181
Building the sample applicationscccccvviiiiieieeniiiiiiieen, 181
Building on WIindows platformsccccvveeriiiiieniiecece e 182
Compiling the application..........ccccccviiiiiiienieeiiie e 182
Linking the applicationcccccccviiiiiiie e 183
Running the applicationccccuviiiiie e 183
Building the sample applicationscccccoevivviieeeeeiiiciiiienn. 184
Monitor Client Library Configuration Instructions.................. 187
Loading Monitor Client Library..........ccccevvvveeiieeiiiiiiieeece e 187
Using Studio Installer...........cccoovciiiiiiee e 187
Results of the [0ad..........c.eeiiiiiiii e 188
Confirming your login account and permissions...........ccccoooevveeee. 188
Modifying the interfaces fileccccooiiiiii 188
Setting up the user enviroNMENt...........occooeeiiiiieiiie e 190
Setting the SYBASE environment variable.................cccuuvee.. 190
Overriding the default location of the interfaces file............... 190
Using Monitor Client LIDraryccocovveviieiiiiiiiiiiee i, 191
EXamples Of VIEWScuiiiiieic e 193
Cache performance SUMMATYcovveiiiiiiiiiieee e 194
Current statement SUMMATYcooeviiiiiiiiieeeeeeeeeeeeee e 195
Database object [0CK StatusS...........ccoovviiiiiieee e 195
Database object page 1/O.........ovvieeiiiiiiiiiiiee e 196
Data cache activity for individual caches...........ccccccceeviiiiiiinnne.n. 197
Data cache statistics for SESSIONcoccueeiriiiiieiiiiee e 197
Data cache statistics for sample intervalccccccceeeiiiiiiiinnn.n. 198
Device 1/O fOr SESSION ...ciiiiiiiiiiiiie e 198
Device I/O for sample intervalccccoocvviiiiiienniiece e 199
Device 1/0 performance SUMMAIYccccveeiiureeeriiieeennieeeennneeens 199
ENGINE ACHIVILY «.oeoviiiiiiiieee e 200
Lock performance SUMMANYcoouiiiiiiierieeeeiiiiiieeee e siiieeeeees 200
Network activity for SESSIONceviviiiiiiiiiiiieeeeee e 201
Network activity for sample intervalccccccceviiiiiiiiiie e, 202
Network performance SUMMAIYccccvvieeeeeeiiiiiiiieeee e s 202

Chapter

Procedure cache statistics for SESSIoNncccccoeviiieiiiiieeiiinee 203
Procedure cache statistics for sample intervalcccvvveeee... 203
Procedure page 1/Oocoi oo 204
ProCESS ACHIVITYii ittt 205
Process database object page I/Occccceeeiiiiiiiiiiii i, 205
Process detail fOr I0CKS.ccvviiiiiiiiiiic e 206
Process detail page /Occvivviiiiiiiiiiieeeeee e 207
ProCess [0CKScooiiiiiiiii e 208
Process Page /Ouuuviiiiiiiiiiieee e 208
Process state SUMMATYccoooeeiiiiieeeeeeeeeeee e 209
Process stored procedure page l/O........cccceeeeeviiiiiiieeee e 209
Server performance SUMMATYeeveeeiiiiiriiieeeeeessiiiireeeeeeenennnes 210
Stored procedure aCtiVityooiicuiiieiiee e 211
TransSaction ACHIVILYccocvvriiieee e 211
APPENDIX B Datatypes and StrUCTUIEScccuvivieiiiiiiee et 227
Summary of datatyPes.......ccciiviiiiiiiieee e 227
Enum: SMC_ALARM_ACTION_TYPEcoociiiiiiiiieiiiee e 230
Enum: SMC_CLOSE_TYPE. ..ot 230
Enum: SMC_DATAITEM_NAME........coooiiiiiiie e 230
Enum: SMC_DATAITEM_STATTYPEociiiiiiiiiiiceiiec e 230
Structure: SMC_DATAITEM_STRUCTccoiiiiiiiiiiieeiieee e 231
Enum: SMC_DATAITEM_TYPE......c.ccoiiiiiiiie e 231
Enum: SMC_ERR_SEVERITY ..cooiiiiiiiie e 231
Enum: SMC_FILTER_TYPEoiiiiiiiiiiiiee e 232
Enum: SMC_HS_ESTIM_OPT .o, 232
Enum: SMC_HS_MISSDATA_OPT .. 232
Enum: SMC_HS_PLAYBACK_OPT....cccciiiiiiieiiiieeeeeee e 232
Enum: SMC_HS_SESS_DELETE_OPT ...ccceiiiiiiiieeieee e 233
Enum: SMC_HS_SESS_ERR_OPT....cccooiiiiiiiiiieieee e 233
Enum: SMC_HS_SESS_PROT_LEVELccccooiiiiiiiiiiiiceiieee 233
Enum: SMC_HS_SESS_SCRIPT_OPT ...coiiiiiiiiiiiieeeiieeeeienn 234
Enum: SMC_HS_TARGET_OPT ...oociiiiiiiiiiiicieeeec e 234
Enum: SMC_HS_TARGET_OPT ...oociiiiiiiiiiiiieieeeeec e 234
Enum: SMC_INFO_TYPE ..o 234
Enum: SMC_LOCK_RESULT ...ccooiiiiiiiiiieeeeee e 235
Enum: SMC_LOCK_RESULT_SUMMARYcocoiiiiiiiiianiiieeeene 235
Enum: SMC_LOCK_STATUS ..., 236
Enum: SMC_LOCK _TYPE ..o, 236
Enum: SMC_OBJ_TYPE ..., 236
Enum: SMC_PROC_STATE oo, 236
Enum: SMC_PROP_ACTION ...cooiiiiiiieieeee 237
Enum: SMC_PROP_TYPE.......ccoiiiiiiiiiiieeee e 237
Enum: SMC_RETURN_CODEcccccoiiiiiiiiiiie e 238

Enum: SMC_SERVER_MODE.........cooiiiiii 239

Enum: SMC_SOURCE ... 239

Union: SMC_VALUE_UNIONcoiiiiiiiieiiee e 240

APPENDIX C Backward Compatibilitycc.uveeiiiiiiiiii 241
Obsolete and replacement funCtionscc.veevveeeiiiiiieieiee s 241

NEW FUNCHIONS ...ceeiiiiiiieiee e 242

Rules for functions and callbacks compatibilitycccceeene 242

APPENDIX D Troubleshooting Information and Error Messages 243
TroublESNOOLING ...vvviiiieii i 243

ErTOr MESSAQGES ... 244

Communication failure: check if server is running. 244

Configuration failure: possibly missing interfaces file or bad login

PAFAMETETS. ..ttt eeeeeaeees 244

Don'’t know how to build example.h...........cccccvvveeiiiiiiiinnnn. 245

error L2029: ‘'SMC_CONNECT’ : unresolved external 245

error L2029: ‘'SMC_CREATE_VIEW' : unresolved external .. 245
fatal error C1083: Cannot open include file: ‘cstypes.h’: No such

file OF dIFECLONY ..oceiiiiiiiiiee e 245

fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such

file OF dIrECLONY ..ocoiiiiiiiiiei e 246

LINK: fatal error L4051: smcapi32.lib : cannot find library 246

0 = SR 247

About This Book

Audience

How to use this book

Sybase® Adaptive Server ™ Enterprise Monitor ™ Client Library
Programmer’s Guide describes how to write Sybase Adaptive Server
Enterprise Monitor Client Library (Monitor Client Library) applications
that access Sybase Adaptive Server Enterprise performance data.

Thisguide isfor programmers who use Adaptive Server Enterprise
Monitor Server or Adaptive Server Enterprise Monitor Historical Server.

When writing a Monitor Client Library application, use this book as a
source of general information on how to construct Monitor Client Library
programs.

Chapter 1, “ Getting started with Monitor Client Library” explains
how to structure abasic Monitor Client Library program and includes
asimple, complete Monitor Client Library application.

Chapter 2, “Data ltems and Statistical Types” describes dataitems,
dtatistical types, and valid dataitem combinations of dataitems used
in Monitor Client Library applications to gather performance data.

Chapter 3, “Monitor Client Library Functions’ describes each
function including syntax, parameter values, examples, permissions,
and related functions.

Chapter 4, “Building aMonitor Client Library Application”
describes how to compile and link a Monitor Client Library program.

Chapter 5, “Monitor Client Library Configuration Instructions”
explains how to configure Monitor Client Library on UNIX or
Windows NT.

Appendix A, “Examples of Views” provides examples of valid
views.

Appendix B, “Datatypes and Structures” summarizes datatypes used
by Monitor Client Library and describes the datatypes that have no
equivaent in C or Open-Client Client Library.

Appendix C, “Backward Compatibility” lists obsolete functions and
their replacement functions.

Xi

Related documents

Xii

Appendix D, “Troubleshooting Information and Error Messages’
explains how to respond to problems that you might have with Monitor
Client Library and lists error messages that may be reported.

The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

TheInstallation Guidefor your platform —describesinstallation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as atextbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

Reference Manual —contains detailed information about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

About This Book

Performance and Tuning Guide — explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issuesthat affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

The Utility Guide—documentsthe Adaptive Server utility programs, such
asisqgl and bcp, which are executed at the operating system level.

The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

The System Tables Diagram —illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in a high availability system.

Using Adaptive Server Distributed Transaction Management Features—
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Xiii

Other sources of
information

Xiv

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access data stored
in relational database management systems.

Full-Text Search Specialty Data Sore User’s Guide—describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the following books for more information about Adaptive Server
Enterprise configuration and tuning:

Managing and Monitoring Sybase Adaptive Server Enterprise describes
how to manage Adaptive Server Enterprise and monitor itsactivitiesusing
Sybase Central ™.

Adaptive Server Enter prise Performance and Tuning Guide describes how
to analyze Adaptive Server Enterprise performance and tuneit to improve
performance.

Adaptive Server Enterprise Reference Manual describes SQL commands,
functions, and stored procedures used with Sybase Adaptive Server
Enterprise.

Adaptive Server Enterprise System Administration Guide contains
information about administering Adaptive Server Enterprise.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

Technical Library CD contains product manuals and isincluded with your
software. The DynaText browser (downloadable from Product Manuals at
http://www.sybase.com/detail/1,3693,1010661,00.html) allowsyouto access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

About This Book

Sybasecertifications
on the Web

e Technical Library Product Manuals Web siteisan HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

For the latest information on product certifications

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

3 Select aproduct name from the product list.

4 Select the Certification Report filter, specify atime frame, and click Go.
5 Click aCertification Report title to display the report.

For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

3 Specify atime frame and click Go.
4 Select aproduct.
5 Click an EBF/Update title to display the report.

To create a personalized view of the Sybase Web site (including support
pages)

Set upaMySybaseprofile. MySybaseisafree servicethat alowsyou to create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

XV

Text conventions

Command syntax

If you need help

XVi

Italics indicates emphasis or indicates that a definition accompanies the
highlighted term.

Variable names, document titles, file names, directory names, and Adaptive
Server Enterprise table names areinitalic typeface:
-Umyname
Adaptive Server Enterprise Monitor Server User’s Guide
VLMon.mrg file
$SYBASE directory
systables

Command syntax statements use the following notational conventions:

Table 1: Command syntax conventions

Example Description

monserver Command keywords appear in lowercase.

option Variables (words that stand for values that you supply in the
command) appear initalic.

[option] Brackets mean that including the enclosed itemsin the command is
optional. Do not include the brackets in your command.

option... Ellipses indicate that you may repeat the preceding item as many
times as you like in the command. Do not include ellipsesin your
command.

Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. I
you cannot resolve a problem using the manual s or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
inyour area.

CHAPTER 1

Overview

Getting started with Monitor
Client Library

This chapter describes the following topics:

Topic Page
Overview 1
What is Adaptive Server Enterprise Monitor 1
Writing aBasic Monitor Client Library program 4

A sample Monitor Client Library program 14

Monitor Client Library is part of Adaptive Server Enterprise M onitor ™. It
is an application programming interface (API) that enables you to write
client applications that connect to Adaptive Server, Adaptive Server
Enterprise Monitor Server (Monitor Server), and Adaptive Server
Enterprise Historical Server (Historical Server) to gather performance
data. Thischapter describes Adaptive Server Enterprise Monitor, explains
the components of aMonitor Client Library application, and listsasample
Monitor Client Library application.

What is Adaptive Server Enterprise Monitor

Adaptive Server Enterprise Monitor provides away to monitor Adaptive
Server performancein real time or in ahistorical data-gathering mode.
System administrators can use this information to identify potential
resource bottlenecks, to research current problems, and to tune for better
performance. Adaptive Server Enterprise Monitor provides feedback for
tuning at several levels:

e Adaptive Server configuration

What is Adaptive Server Enterprise Monitor

Table and index design
SQL statementsin applications and stored procedures

Adaptive Server Enterprise Monitor components

Adaptive Server Enterprise Monitor consists of four componentsthat gather or
display Adaptive Server performance data:

Monitor Server —aserver that collects Adaptive Server performance data
in real time and makes the data available to the other Adaptive Server
Enterprise Monitor components. Monitor Server is a Sybase Open
Server " application.

Historical Server —aserver that obtains Adaptive Server performance data
from Monitor Server and savesthe datain files for deferred analysis.
Historical Server is a Sybase Open Server application.

Monitorsin the Adaptive Server plug-in for Sybase Central (Monitor
Viewer) — the monitors provide a graphical user interface to Monitor
Server. They obtain Adaptive Server performance data from Monitor
Server and display the datain real time in tables and graphs.

Monitor Client Library —an application programming interface to Monitor
Server available to usersfor devel oping monitoring applications. Monitor
Viewer and Historical Server are Monitor Client Library applications.

Adaptive Server Enterprise Monitor architecture

Figure 1-1shows the relationships between Adaptive Server and the various
components of Adaptive Server Enterprise Monitor.

CHAPTER 1 Getting started with Monitor Client Library

Figure 1-1: Adaptive Server Enterprise Monitor architecture

Shared Memory

Adaptive Server Monitor
Server
These servers must reside o /F \
the same computer.
B4 AN ¢

N

Open Open Open Monitor Monitor Monitor
Client Client Client Client Client Client
Library Library Library Library Library Library

>
>

Adaptive Server client in Server

> >
> —
A EE

Monitor Viewer Historical Other Monitor
Client Library

applications, including isq| Sybase Central applications

Adaptive Server saves performance datain ashared memory area that Monitor
Server reads. Because of this shared memory technique, Monitor Server must
be installed and running on the same machine as the Adaptive Server
installation being monitored. A one-to-one relationship exists between
Adaptive Server and Monitor Server. For more information about Monitor
Server, see the Sybase Adaptive Server Enterprise Monitor Server User’s
Guide.

Monitor Client Library applications obtain Adaptive Server performance
statistics from Monitor Server. These applications are clients of Monitor
Server. For performance reasons, Sybase recommends running Monitor Client
Library applications on machines other than the ones where Adaptive
Server/Monitor Server pairs are running.

Monitor Viewer in Sybase Central includes aset of monitors showing different
aspectsof Adaptive Server resource usage at variouslevelsof detail. Each open
monitor is a separate application, with a unique client connection to Monitor
Server. In Sybase Central, each Adaptive Server installation hasits own
Monitors folder containing the set of monitor objects.

Writing a Basic Monitor Client Library program

Historical Server collects performance information from Monitor Server and
savestheinformationinfilesfor deferred analysis. Historical Server interfaces
let users specify the data to collect and the time period desired. They aso
include a historical data playback feature. The interfaces are:

e A command interface in isgl. For more information, see the Sybase
Adaptive Server Enterprise Monitor Historical Server User’s Guide.

e A programming interface using Monitor Client Library. For more
information, see Chapter 3, “Monitor Client Library Functions” and the
Sybase Adaptive Server Enterprise Monitor Historical Server User’s
Guide.

Writing a Basic Monitor Client Library program
A basic Monitor Client Library application:
1 Defineserror handling.
2 Connectsto a server using the following steps:
» Allocates a connection.
e Setsproperties on a connection.
» Connectsto aserver.

3 Createsone or more views that define the performance data to be
monitored.

Optionally, targets specific performance data values with filters.
Optionally, sets alarms on performance data values.

Requests performance data values.

Processes the resullts.

Closes the connection to the server.

© 00 N o o b

Deallocates the connection or reuse it by reconnecting.

Note You must have the System Administrator role on Adaptive Server or
execute permission on the stored procedure mon_rpc_connect to perform
monitoring.

CHAPTER 1 Getting started with Monitor Client Library

Application logic flow

Most Monitor Client Library applications exhibit alogic flow similar to the
following:

where:

allocate a connection
set properties on the connection
connect
loop to create views on the connection
loop to create filters (optional)
loop to create alarms (optional)
loop to refresh connection
for each view
get the row count
for each row
for each column
get the data
display the data
loop to drop alarms (optional)
loop to drop filters (optional)
loop to drop views (optional)
close monitor connection
deallocate or reuse connection

¢ An application can have any number of connections.

¢ A connection can have one or more views.

¢ A view must have one or more dataitems.

¢ A view can have onefilter per dataitem.

¢ A view can have any number of alarms and can have multiple alarms per
dataitem in the view.

The following sections describe the steps for a basic Monitor Client Library
program.The steps are cross referenced to the sample program that follows

them.

Step 1: define error handling

An application uses one or more callback routines to handle Monitor Client
Library and Server error and informational messages.

See the code sample on page 34.

Writing a Basic Monitor Client Library program

Step 2: connect to a server

The Monitor Client Library functions require establishing an Adaptive Server
Enterprise Monitor connection. The Adaptive Server Enterprise Monitor
connection uses one or more Open Client connections depending upon the
connection type.

The two types of Monitor connections are Live mode and Historical mode:

Live mode connects to Monitor Server and Adaptive Server. It provides
access to performance data.

Historical mode connects to Historical Server and either records
performance data for later access or plays back recorded data.

Connecting to a server is athree-step process. An application:

Allocates a connection structure
Sets properties for the connection, if necessary

Logsintoaserver

Allocating a connection structure

An application calls smc_connect_alloc to allocate a connection structure.

See the code sample on page 16.

Setting connection structure properties

An application calls smc_connect_props to set, retrieve, or clear connection
structure properties.

Connection properties define various aspects of a connection’s behavior. For
example:

SMC_PROP_USERNAME defines the username that a connection will
use when logging into a server.

SMC_PROP_PASSWORD specifies the password for the username.
SMC_PROP_SERVERNAME defines the server for this connection.

SMC_PROP_IFILE definestheinterfacesfile namefor this connection. If
you do not specify this property on a UNIX system, the default interfaces
filein the SYBASE environment variable directory is used. On Windows
NT, the default interfaces fileis sql.ini.

CHAPTER 1 Getting started with Monitor Client Library

¢ SMC_PROP_SERVERMODE defines the type of connection: live or
historical.

Required connection properties

At aminimum, an application must set the connection properties that specify
the connection’s username (SMC_PROP_USERNAME) and allow the server
to authenticate the user’s identity by requiring a valid password. If the server
requires a password, then the application must set the
SMC_PROP_PASSWORD property to thevalue of the user’s server password.

See the code sample on page 17.

Connecting to a server

An application callssmc_connect_ex to connect to a server. When establishing
aconnection, smc_connect_ex Sets up communication with the network, logs
in to the server, and communicates any connection-specific property
information to the server. A connection to Adaptive Server writes dbcc traceon
messages to the Adaptive Server error log. You can ignore these messages.

For example, if the server supports network-based user authentication and the
client application requestsit, then Client Library and the server query the
network’s security system to seeif the user (whose name is specified by
SMC_PROP_USERNAME) islogged in to the network.

See the code sample on page 22.

Step 3: create a view

Views are defined groups of dataitems. The dataitems specified determine how
the datais summarized. Since you can specify multiple views, the application
has full flexibility in the gathering of data. For example, a view consisting of
two dataitems (device name, value for sample and device I/O, rate for sample)
returns the device I/O rate for each database device.

For detailson valid combinations of dataitems and information about how data
items are summarized, see Chapter 2, “ Data Items and Statistical Types”

For examples of views, see Appendix A, “Examples of Views".

Writing a Basic Monitor Client Library program

Data items

Statistical types

A dataitem isaparticular piece of datathat can be obtained from the Monitor
Client Library, for example, page 1/0O, login name, device reads, and so on. For
each dataitem in aview, you must specify a statistical type.

The statistic type defines the duration of the dataitem (sample or session) and
whether the server performs calculations on the data item.

The six gtatigtic types are:

SMC_STAT _VALUE_SAMPLE - this statistic type returns a count of
activity or sometype of information that appliesto the most recent sample
interval. No calculations are performed.

Activity counts —for data items that represent activity counts,
SMC_STAT_VALUE_SAMPLE returns the number of occurrences
of an activity during the most recent sample interval. For example,
SMC_STAT _VALUE_SAMPLE for SMC_NAME_PAGE_|Oisthe
number of page I/Os that occurred during the most recent sample
interval.

Other information — thisis the only statistic type valid for dataitems
that represent character strings. For example,
SMC_STAT_VALUE_SAMPLE for

SMC_NAME_OBJECT_NAME returns the name of a database
object. This statistic typeisaso the only onevalid for dataitems that
represent values such as | Dsand valuesfor configured parameters, on
which calculations are never performed.

SMC_STAT _VALUE_SESSION —this statistic type returns acumulative
count of activity since the start of gathering the data (since the connection
was opened). No calculations are performed. For example,
SMC_STAT_VALUE_SESSION for SMC_NAME_PAGE_IO isthe
number of page I/Os that occurred since the session started.

SMC_STAT_RATE_SAMPLE —this statistic type calculates arate per
second. It returns the average number of occurrences per second of an
activity during the most recent sample interval. For example,
SMC_STAT_RATE_SAMPLE for SMC_NAME_PAGE_|O isthe
average number of page I/Os that occurred each second during the most
recent sample interval.

CHAPTER 1 Getting started with Monitor Client Library

The calculation is count for the most recent sample interval divided by
number of seconds in the sampleinterval.

e SMC_STAT_RATE_SESSION - this statistic type calculates a rate per
second. It returns the average number of occurrences per second of an
activity during the current session. For example,
SMC_STAT_RATE_SESSION for SMC_NAME_PAGE_IOisthe
average number of page 1/Os that occurred per second since the session
started.

The calculation is count for the session divided by number of secondsin
the session.

e SMC_STAT_AVG_SAMPLE —this statistic type calculates an average
value per occurrence of an activity over the most recent sampleinterval.
Only afew dataitems can use this statistic type. The meaning of the
returned val ue depends on the data item name. For example,
SMC_STAT_AVG_SAMPLE for SMC_NAME_STP_ELAPSED_TIME
is the average execution time per execution of a stored procedure during
the most recent sample interval.

¢ SMC_STAT_AVG_SESSION -this statistic type calculates an average
value per occurrence of an activity over the session. Only afew dataitems
can use this statistic type. The meaning of the returned val ue depends on
the dataitem name. For example, SMC_STAT_AVG_SESSION for
SMC_NAME_STP_ELAPSED_TIME isthe average execution time per
execution of a stored procedure during the recording session.

Note Not all statistical typesarevalid for all dataitems. See Chapter 2, “Data
Items and Statistical Types” for more information about data items and the
rules for using them.

Creating views for a connection

smc_create_view creates aview on aparticular Monitor connection. A
connection must have at least one view.

For detailson valid combinations of dataitemsand information about how data
items are summarized, see Chapter 2, “ Data ltems and Statistical Types”.

Writing a Basic Monitor Client Library program

You can think of aview asatable. The dataitemsin aview are represented by
the columnsin that table. The number of rows returned for a particular view
depend upon the particular dataitemsin the view. For example, aview with
server-wide data returns a single row, whereas a view with per-device data
returns one row for each device.

For example:
A view consisting of two dataitems:

SMC_NAME_LOCK_TYPE, SMC_STAT VALUE_SAMVPLE
SMC_NAME_LOCK_COUNT, SMC_STAT_RATE_SAMPLE

returnstherate of requested locksfor each lock type during the sampleinterval.
A view consisting of one data item:
SMC_NAVE_LOCK_COUNT, SMC_STAT RATE_SAMPLE

returns the rate of requested locks summarized for all lock types during the
sampleinterval.

For complete detail s on valid combinations of dataitems and understanding of
how dataitems are summarized, refer to Chapter 2, “Dataltems and Statistical
Types’

See the code sample on page 22.

Step 4: create filters

10

smc_create_filter createsafilter on adataitem. Filterslimit the number of rows
of performance datareturned by aview. A filter can be applied to any dataitem
specified in aview. A view can contain onefilter per dataitem. If you include
more than onefilter in aview, Monitor Client Library uses ANDs to include
those filters.

The types of filters available are:
« Equato

« returnsonly values equal to one of the specified values (logical OR of
each Equal comparison)

e Not Equal to

« returnsonly values equal to none of the specified value (logical AND
of each Not-Equal comparison)

e Greater than or equal to

CHAPTER 1 Getting started with Monitor Client Library

e returnsvalues greater than or equal to the specified value
e Lessthan or equa to
e returnsvaluesless than or equal to the specified value

¢ Range: bottom isless than or equal to value which islessthan or equal to
top

e returns values between the top and bottom values, inclusive
e TopN
¢ returnsthe N highest values

A view may contain more than onefilter, but any particular dataitem may only
have onefilter bound to it. When a view contains more than one filter, the
filters are combined with an AND.

You can add or drop filters at any time. The change in filtering takes effect as
of the next refresh.

See the code sample on page 24.

Step 5: set alarms

smc_create_alarm_ex sets an alarm on any numeric data item (except for | Ds)
in aview. When specifying an alarm for a particular dataitemin alive
connection, an application supplies a callback function that isinvoked when
the alarm is triggered.

The Historical Server cannot call a callback function, but it can write to alog
file or execute a procedure each time an alarm is triggered.

An example of the type of actions an application can execute upon the
triggering of an alarmisto log amessage, which is one of the features provided
by Historical Server.

You can add or drop an alarm at any time. The change in alarm specification
takes effect as of the next refresh.

Note Monitor Client Library applies alarms after it appliesfilters.

See the code sample on page 25.

11

Writing a Basic Monitor Client Library program

Step 6: request performance data and process results

12

After al of the connections, views, alarms, and filters are created, an
application requests valuesfor performance data. Retrieving performance data
is athree-step process:

* Refresh the data.
¢ Check the row count.
e Look at each dataitem in the view.

When aMonitor Client Library application needsto retrieve data, it initiatesa
refresh. The refresh causes Monitor Client Library to obtain fresh data. After

each refresh, the application retrievesthe datain each view on an item-by-item
basis (that is, for each column of atable).

After calling smc_refresh_ex on a given connection, the application retrieves
the data. The user retrieves data on an item-by-item basis.

Depending on the number of events being collected, frequent refreshes might
be necessary. A view that contains many keys needs more frequent refreshes
than views with one or afew keys. The following symptoms might indicate an
application that is not refreshing frequently enough:

* Verylarge numbers of lost eventsreported in the Monitor Server error log.
The Sybase Adaptive Server Enterprise Monitor Server User’s Guide
discusses configuration changes that can also help to reduce event loss.

e Theapplication appearsto hanginacall to smc_refresh_ex. A large
number of keysin aview can cause a condition in which Monitor Server
can not keep up with the number of events being collected and does not
return control. Because of this, Monitor Server begins to consume large
amounts of CPU time.

smc_get_row_count determines how many rows of results are available for a
view. A view returnsresultsin what isessentially atable with potentially many
“rows’ of result data, but in some cases, possibly zero rows.

smc_get_dataitem_value retrieves performance datavaluesfor asingle column
of asingle row of aview.

Filters and alarms are applied during the refresh of the data.

Polling for new performance datais client-driven and is limited only by the
speed of the data-providing system and the data-gathering system.

See the code sample on page 26.

CHAPTER 1 Getting started with Monitor Client Library

Step 7: close and deallocate connections
Before exiting, aMonitor Client Library application must:
¢ Closedl open connections.

* Dedllocate each connection.

Closing and deallocating connections

An application callssmc_close to close aconnection and smc_connect_drop to
deallocate a connection structure. It is an error to deallocate a connection that
has not been closed. A call to smc_close resultsin the following implicit
Monitor Client Library calls:

e Oneor morecalsto smc_drop_alarm to remove alarms, if necessary.
e Oneor morecallstosmc_drop_filter to remove filters, if necessary.
¢ Oneor morecallsto smc_drop_view to remove views.

See the code sample on page 33.

Reopening connections

After an application closes a connection, but before it deallocates the
connection structure, it can call smc_connect_ex to reopen the connection.

Playing back recorded data

To retrieve recorded data from Historical Server, the steps are similar to the
above, except:

e The application must connect to Historical Server. Set
smc_prop_servermode to SMC_SERVER M _HISTORICAL before
making the connection.

e Theapplication must call smc_create_playback_session after connecting,
but before creating views.

e Theapplication must call smc_initiate_playback after creating all views.
¢ Alarmsare not allowed on playback of recorded historical data.
¢ Viewsand filters cannot be dropped.

e After thelast refresh, the application must call smc_terminate_playback.

13

A sample Monitor Client Library program

A sample Monitor Client Library program

This section contains a listing for a sample Monitor Client Library program
that connects to a server, sends a query, processes the results, then exits.

Example program

Thefollowing example program, monitor.c, demonstrates the steps outlined in
the previous section. Commentary for each step follows the example.

/*nonitor.c
** Exanpl e program showi ng logic flow of Monitor dient Library
** application. This exanple assunes the use of an ANSI C
** conpliant conpiler. This programcreates two connections
** to the Monitor Server. Data is extracted from one connection
** at the beginning and end of the nonitoring session.
** Data is extracted fromthe other connection every
** SAVPLE | NTERVAL seconds NUM OF SAMPLES ti nes.
*/
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>
/* The nctpublic.h header file contains function prototypes, etc.
** for monitor client library functions. It also includes a
** header file called nttypes.h, which defines the datatypes
** ysed for nonitor client library applications.
*/
#i ncl ude "nctpublic. h"
#def i ne NUM OF_SAMPLES 10
#defi ne SAVPLE | NTERVAL 5
#defi ne NUM SERVER DATA | TEMS 3
#define NUM DB_|I NFO_ | TEMS 14
#define NUM NW I NFO_| TEMS 6
#defi ne OPTI ONAL_CALLS -1

[*Error signals*/
#defi ne VI EW NONEXI STENT -1
#def i ne CONNECT_NONEXI STENT -1

SMC_RETURN_CODE main (SMC_I NT argc, SMC _CHARP argv[])
{
SMC VALUE_UNI ON server NanmeUni on;
SMC VALUE_UNI ON user NaneUni on;
SMC_VALUE_UNI ON passwor dUni on;
SMC_VALUE_UNI ON i nterfacesFil eUni on;

14

CHAPTER 1 Getting started with Monitor Client Library

SMC_VALUE_UNI ON wor kUni on;
SMC_VALUE_UNI ON r et ur nedDat aUni on;
SMC CONNECT _|I D connect 1 id;

SMC _CONNECT _| D connect 2_i d;

SMC VIEW I D server _view. id;

SMC_ VIEWID db_info_view_id;
SMC_ VIEWID nw_info_view.id;

SMC_RETURN_CODE r et ;
SMC_DATAI TEM TYPE dataitemtype; /*Holds data itemtype
returned by get_dataitemtype
function call*/
/*Needed if alarms and filters are used */
#i f def OPTI ONAL_CALLS
SMC ALARMID alarm.id;
SMC FILTER ID filter_id;
SMC_CHARP filter_strings[2]; /*datatype is pointer to
string. This is an array
of pointers.*/

#endi f
SMC_SIZET row, numof _rows,item /*This is an integer data
type*/
SMC_SI ZET out put Lengt h; /*Length of output returned
by snt_connect _props
function call*/
/*
** Definition of SMC _DATAI TEM STRUCT dat at ype
*/

SMC_DATAI TEM STRUCT server _i nf o_vi enf NUM_SERVER _DATA | TEMS] ;
SMC_DATAI TEM STRUCT db_i nf o_vi ew] NUM DB_| NFO_| TEMS] ;
SMC_DATAI TEM STRUCT nw_byt es_vi ew[NUM_NW | NFO_| TEMB] ;

SMC_VALUE_UNI ON server _dat a[NUM SERVER DATA | TEMS] ;
SMC_VALUE_UNION db_dat a[NUM DB_I NFO_| TEMS] ;
SMC_VALUE_UNION nw_dat a[NUM_NW | NFO_| TEMS] ;

/*Cal | back function prototypes. Actual functions are defined
** bel ow.
*/
SMC_ VO D error Cal | back(SMC_CONNECT_| D, SMC_COMMAND _| D, SMC VOl DP) ;
SMC_ VO D al ar nCal | back(SMC_CONNECT_| D, SMC_COMMAND _| D, SMC_VQl DP) ;
SMC BOOL explicitlnterfacesFile = FALSE;

int index,iterations;

15

A sample Monitor Client Library program

/*

** These are | abels used when printing out data returned by the

** database info view.
*/

SMC_CHARP db_i nf o_| abel s| NUM DB_|I NFO_ | TEMS] = {

"Dat abase ID. ",
"oject ID ",
"Dat abase nane: ",

" Cbj ect nane: ,

"Page hit percent: ",

"Page 1/O ",

"Page |l ogical reads this sanple: ",
"Page |l ogical reads this session: ",
"Page logical read rate this sanple: ",
"Page logical read rate this session: ,
"Page physical reads this sanple: ",
"Page physical reads this session: ",
"Page physical read rate this sanple: ,
"Page physical read rate this session: "

/*

** These are | abels used when printing out data returned by

** network info view
*/

SMC_CHARP nw_i nfo_l abel s| NUM_NW I NFO | TEMS] = {

"Network bytes received this sanple: ",
"Networ k bytes received this session: ",
"Network bytes sent this sanple: ",
"Networ k bytes sent this session: ",
"Network byte I/Orate this sanple: ",
"Network byte I/Orate this session: "

}s
if (argc <5){

printf("Usage <%> -U <user_nanme> [-P <password>]\

-S <nonserver nane> [-|
exit(1);
}
/*

** Connect to a server.
*/

<interfaces_file>]\n",argv[0]);

For commentary, see “Step 2: connect to aserver” on page 6

/*

16

CHAPTER 1 Getting started with Monitor Client Library

** Allocate first connection

*/
ret=snc_connect _al | oc(errorCal | back,
&connectl id /*Pointer to connect _id!*/
)
if (ret !'= SMC_RET_SUCCESS) {
printf("Attenpt to allocate first connection failed \
with error %d.\n",ret);
exit(1);
}
/*
** All ocate second connection
*/
ret=snc_connect _al | oc(errorCal | back,
&connect2 i d /*Pointer to connect _id!*/
)
if (ret !'= SMC RET_SUCCESS) {
printf("Attenpt to allocate second connection failed \
with error %d.\n",ret);
exit(1);
}
/*

** Set mandatory and sone optional connection properties.

** Mandat ory connection properties are user name, Server nane,
** and password if user password is not NULL. If interfaces
** file name is not set, default is "interfaces" in directory
** pointed to by $SYBASE environnent vari abl e.

For commentary, see “ Required connection properties’ on page 7.

*/

for (index=1;index<argc;index++) {
/*User nane*/
if (strncrmp(argv[index],"-U",2) == 0) {
user NanmeUni on. stringVal ue = argv[index+1];
ret=snc_connect _props(connectl1_id,

SMC_PROP_ACT_SET, /*Property action*/

SMC_PROP_USERNAME, / * Property*/

&user NameUni on, /*Note that union,
not nenber of union,
is used for
property val ue*/

SMC_NULLTERM /*I ndi cates null -
termnated string
for buffer |ength*/

17

A sample Monitor Client Library program

NULL /*Use NULL when
setting a property*/
)
} /*End if argunment is user nanme*/

if (ret '= SMC RET_SUCCESS) {
printf("Could not set user nane.\n");
exi t (SMC_RET_FAI LURE) ;
}
/*Password. Default password is a null string*/
if (strncnp(argv[index],"-P",2) == 0) {
passwor dUni on. stringVal ue = argv[index+1];
ret =snt_connect _props(connectl id,
SMC_PROP_ACT_SET, /*Property action*/
SMC_PROP_PASSWORD, / * Property*/
&asswor duni on, /*Note that union,
not menber of union,
is used for
property val ue*/
SMC_NULLTERM /*1 ndi cates null -
termnated string
for buffer |ength*/
NULL /*Use NULL when
setting a property*/
)
} /*End if argument is password*/
if (ret !'= SMC_RET_SUCCESS) {
printf("Could not set password.\n");
exi t (SMC_RET_FAI LURE) ;
}
[*Server nanme*/
if (strncrmp(argv[index],"-S",2) == 0) {
server NanmeUni on. stringVal ue = argv[i ndex+1];
ret=snt_connect _props(connectl id,
SMC_PROP_ACT_SET, /*Property action*/
SMC_PROP_SERVERNAME, / * Pr operty*/
&server NanmeUni on, /*Note that union,
not nenber of union,
is used for
property val ue*/
SMC NULLTERM /*I ndi cates null -
terminated string
for buffer |ength*/
NULL /*Use NULL when
setting a property*/
) .

} /*End if argunent is server nanme*/

18

CHAPTER 1 Getting started with Monitor Client Library

if (ret !'= SMC RET_SUCCESS) {
printf("Could not set server nane.\n");
exit (SMC_RET_FAI LURE) ;

}
/*Interfaces file. If unspecified, $SYBASE/interfaces is used*/
if (strncnp(argv[index],"-1",2) == 0) {
i nterfacesFil eUnion.stringValue = argv[i ndex+1];
ret=snt_connect _props(connectl id,

SMC_PROP_ACT_SET, /*Property action*/

SMC_PROP_I FI LE, / *Property*/

& nterfacesFil eUnion, /*Note that
pointer to union,
not nenber of
uni on,is used for
property val ue*/

SMC_NULLTERM /*I ndi cates null -
termnated string
for buffer |ength*/

NULL /*Use NULL when

setting a property*/

)

explicitlnterfacesFile = TRUE
} /*End if argument is interfaces file pathnanme*/

if (ret !'= SMC RET_SUCCESS) {
printf("Could not set interfaces file nane.\n");
printf("Using default interfaces file.\n");
}
} /*End for | oop getting connection properties
from command- | i ne argunents*/
/*
** (Optional snct_get_connect_props call that sets a pointer to be
** passed to error callback. In this case, the pointer is to a
** string that tells which connection encountered the error.
*/
wor kUni on. voi dpVal ue = "first connection"; /*Call to set user
dat a handl e | ooks
for value to set in
voi d poi nter nenber
of union.*/
ret =snc_connect _props(connect1 id, SMC PROP_ACT_SET,\
SMC_PROP_USERDATA, &wor kUni on, SMC_NULLTERM NULL) ;
if (ret !'= SMC RET_SUCCESS){
printf("snc_connect _props call failed to\
set userDataHandle.\n");

/*

19

A sample Monitor Client Library program

** Denonstration of "get" node for snt_get_connect_props
*/
/*Check if user name has been set*/
ret=snc_connect _props(connect1_id,
SMC_PROP_ACT_GCET, /*Property action is "get"*/
SMC_PROP_USERNANE,
&nor kUni on,
SMC_UNUSED, /*Lengt h paraneter ignored
on "get" operations*/
&out put Lengt h /*Note this is a pointer!*/
)
if (ret !'= SMC_RET_SUCCESS) {
printf ("Could not get user nane. Execution continuing.\n");
}
el se {
if (outputLength == 0) {
printf("User name not set. Quitting execution.\n");
exi t (SMC_RET_FAI LURE) ;
}
el se {
/*
** Application is responsible for freeing
** menory allocated to string menber of SMC VALUE UNI ON by
** |ibrary.
*/
free(wor kUni on. stringVal ue);
}
}

/*Check if server nane has been set*/
ret=snc_connect _props(connect1_id,
SMC_PROP_ACT_GET, /*Property action is "get"*/
SMC_PROP_SERVERNANME,
&wor kUni on,
SMC_UNUSED, /*Lengt h paraneter ignored
on "get" operations*/
&out put Lengt h /*Note this is a pointer!*/
)
if (ret !'= SMC_RET_SUCCESS) {
printf ("Could not get server nane. Execution continuing.\n");
}
el se {
if (outputLength == 0) {
printf("Server nanme not set. Quitting execution.\n");
exi t (SMC_RET_FAI LURE) ;
}

el se {

20

CHAPTER 1 Getting started with Monitor Client Library

free(wor kUni on. stringVal ue);
}
}
/*
** Allocate properties for second connection. No need to
** repeat error checking.
*/
ret=snt_connect _props(connect2_i d, SMC PROP_ACT_SET, \
SMC_PROP_USERNAME, &user NameUni on, SMC_NULLTERM NULL) ;
if (ret !'= SMC RET_SUCCESS) {
printf("Could not set user nane for second connection.\n");
exi t (SMC_RET_FAI LURE) ;
}
ret=snc_connect _props(connect2_i d, SMC PROP_ACT_SET, \
SMC_PROP_PASSWORD, &passwor dUni on, SMC_NULLTERM NULL) ;
if (ret !'= SMC RET_SUCCESS) {
printf("Could not set password for second connection.\n");
exi t (SMC_RET_FAI LURE) ;
}
ret=snc_connect _props(connect2_i d, SMC PROP_ACT_SET, \
SMC_PROP_SERVERNAME, &ser ver NaneUni on, SMC_NULLTERM NULL) ;
if (ret !'= SMC RET_SUCCESS) {
printf("Could not set server name for second connection.\n");
exi t (SMC_RET_FAI LURE) ;
}
if (explicitlnterfacesFile) {
ret =snt_connect _props(connect2_i d, SMC PROP_ACT_SET, \
SMC_PROP_I FI LE, & nt erfacesFi | eUni on, SMC_NULLTERM NULL) ;
if (ret '= SMC RET_SUCCESS) {
printf("Could not set server name for second connection.\n");
exi t (SMC_RET_FAI LURE) ;
}
}
/*
** (Optional snc_connect_props call to set user-defined pointer to
** pe passed to error callback. This pointer points to a
** string that tells where the error call back was triggered.
*/
wor kUni on. voi dpVal ue = "second connection"; /*Call to set user
data handl e | ooks for
value to set in void
poi nter menber
of union.*/
ret =snt_connect _props(connect2_i d, SMC PROP_ACT_SET, \
SMC_PROP_USERDATA, &wor kUni on, SMC_NULLTERM NULL) ;
if (ret !'= SMC RET_SUCCESS){

21

A sample Monitor Client Library program

printf("snc_connect _props call failed to set userDataHandl e.\n");

}
/*

** Connect to nonitor server
For commentary, see “Connecting to a server” on page 7

*/
/*
** First connection
*/
ret=snc_connect _ex(connect1_id);
if (ret '= SMC RET_SUCCESS) {
printf("First connection failed to connect to \
nmoni tor server.\n");
exit (SMC_RET_FAI LURE) ;
}
/*
** Second connection
*/
ret=snc_connect _ex(connect 2_id);
if (ret !'= SMC_RET_SUCCESS) {
printf("Second connection failed to connect to \
nmoni tor server.\n");
exi t (SMC_RET_FAI LURE) ;
}
/*
** Create views on connections.
*/

For commentary, see “ Step 3: create aview” on page 7
** Define views.

/*
** Each data itemnust be paired with a
** gtatistic type . View definitions are used in create_view
** calls after connecting to nonitor server.
*/
/*This is a server-wi de view that returns one row of data*/
server _info_view 0] .dataltenNane =SMC_NAME_SQL_SERVER_NAME;
server _info_view 0] .dataltenf5tat Type = SMC_STAT_VALUE_SAMPLE;
server _info_view 1] . dataltenNane = SMC_NAME_SQL_SERVER VERSI ON;
server _info_view 1].dataltenfStat Type = SMC_STAT_VALUE_SAMPLE;
server _info_view 2].dataltenNane = SMC_NAMVE_TI MESTAMP;
server _info_view 2].dataltenfStat Type = SMC_STAT_VALUE_SAMPLE;
/*

22

CHAPTER 1 Getting started with Monitor Client Library

** This is a viewwi th key and result data itens that returns
** multiple rows of data.

*/

db_info_view 0] .dataltenName = SMC NAME DB I D; /*Key data itens*/

db_i
db_i
db_i
db_i

db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
db_i
/ *

nfo_view 0] .
nfo_view1].
nfo_view1].
nfo_view 2].

nfo_view 2].
nfo_view 3].
nfo_view 3].
nfo_view 4].
nfo_view 4].
nfo_view 5].
nfo_view 5].
nfo_view 6] .
nfo_view 6] .
nfo_view7].
nfo_view7].
nfo_view 8].
nfo_view 8].
nfo_view 9].
nfo_view 9].

nfo_view 10].
nfo_view 10].
nfo_view 11].
nfo_view 11].
nfo_view 12].
nfo_view 12].
nfo_view 13].
nfo_view 13].

dat al t enSt at Type = SMC_STAT_VALUE_SAMPLE;
datal temNane = SMC_NAME_OBJ_I D;
dat al tenSt at Type = SMC_STAT_VALUE_SAMPLE;
dat al t emNanme = SMC_NAME_DB_NAME; /*Result data
itens*/
dat al t enSt at Type = SMC_STAT_VALUE SAMPLE;
dat al t emNane = SMC NAME OBJ_NAME;
dat al tenSt at Type = SMC_STAT_VALUE_SAMPLE;
dat al t emNane = SMC_NAME_PAGE _HI T_PCT;
dat al tenSt at Type = SMC_STAT_VALUE_SAMPLE;
dat al t emName =SMC_NAME_PAGE_| O
dat al t enSt at Type = SMC_STAT_VALUE SAMPLE;
dat al t emName = SMC_NAME_PAGE_LOG CAL_READ;
dat al t enSt at Type = SMC_STAT_VALUE_SAMPLE;
dat al t emNane = SMC_NAME_PAGE_LOG CAL_READ;
dat al tenSt at Type = SMC_STAT_VALUE_SESSI ON;
dat al t emNane = SMC_NAME_PAGE_LOG CAL_READ;
dat al t enSt at Type = SMC_STAT_RATE_SAMPLE;
dat al t emName = SMC_NAME_PAGE_LOG CAL_READ;
dat al t enSt at Type = SMC_STAT_RATE_SESSI ON,
dat al t emName = SMC_NAME_PACE_PHYSI CAL_READ;
dat al t entt at Type = SMC_STAT_VALUE_SAMPLE;
dat al t emName = SMC_NAME_PACE_PHYSI CAL_READ;
dat al t enSt at Type = SMC_STAT_VALUE_SESSI ON;
dat al t emNane = SMC_NAME_PAGE_PHYSI CAL_READ;
dat al t enSt at Type = SMC_STAT_RATE_SAMPLE;
dat al t emName = SMC_NAME_PACE_PHYSI CAL_READ;
dat al tentt at Type = SMC_STAT_RATE_SESSI ON;

** Anot her server-w de view

*/

nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi
nw_byt es_vi

ewf 0] .
ew 0] .
ew 1] .
ew 1] .
ew 2] .
ew 2] .
ew 3] .
ew 3].
ew 4] .
ew 4] .
ewf 5] .

dat al t emName = SMC_NAME_NET_BYTES_RCVD,
dat al tenSt at Type = SMC_STAT_VALUE_SAMPLE;
dat al temNane = SMC_NAME_NET_BYTES_RCVD;
dat al tentSt at Type = SMC_STAT_VALUE_SESSI ON;
dat al t emName = SMC_NAME_NET_BYTES_SENT;
dat al t enSt at Type = SMC_STAT_VALUE_SAMPLE;
dat al t emName = SMC_NAME_NET_BYTES_SENT;
dat al tentSt at Type = SMC_STAT_VALUE_SESSI ON;
dat al temNane = SMC_NAME_NET_BYTE_I G,

dat al tentSt at Type = SMC_STAT_RATE_SAMPLE;
dat al t emNamre = SMC_NAME_NET_BYTE | G,

23

A sample Monitor Client Library program

nw_bytes_view 5] . dataltenfstat Type = SMC_STAT_RATE_SESSI ON;

ret=snc_create_view (connectl_id, / *Connect | D assigned when
connect al |l ocat ed*/
server_info_view, /*This is a pointer to
array of SMC _DATAI TEM STRUCTS
whi ch defines the view/
NUM_SERVER _DATA | TEMS, /*No. of items in

the view/
"server info view', /*lgnored on a live
connect i on*/
&server_view. id /*Val ue i s assigned
by this call*/
)
if (ret '= SMC RET_SUCCESS) ({ /[*Cleanup fromfailed
create_view call*/
ret=snc_connect _drop(connectl_id); [*Create view fail ed

so no further use for
thi s connection*/
connect1_id = CONNECT_NONEXI STENT;
}
/*
** The second connection will have two views
*/
ret=snc_create_view(connect?2_id, db_info_vi ew, NUM DB _| NFO_| TEMS,
"db info view', &b_info_view.id);
if (ret !'= SMC_RET_SUCCESS) {
db_info view id = VI EW NONEXI STENT;
}
ret=snc_create_vi ew connect 2_i d, nw_bytes_vi ew, NUM_NW._| NFO_| TEMS,
"nw bytes view', &w_i nfo_vi ew_i d);
if (ret !'= SMC_RET_SUCCESS) {
nw_i nfo_view.id = VI EW NONEXI STENT;
}
/*

** Create a filter.
*/
For commentary, see “Step 4: create filters” on page 10
/*
** Filters and alarnms nmay be applied to data itens within a view
** This is optional.
** |nthis case, we only want to see |I/O activity for a

** particul ar database and tenpdb. If any physical reads occur,
** an alarmis triggered that posts a nessage to the screen.

24

CHAPTER 1 Getting started with Monitor Client Library

*/

#i f def OPTI ONAL_CALLS

/*

* *

*/

filter_strings[O]
filter_strings[1]

"ny_db";
"tenmpdb";

wor kUni on. voi dpVal ue = filter_strings;

ret=snc_create_filter(connect2_id,

db_info_view.id,
&db_info_view 2],

SMC FILT T_EQ
&wor kUni on,
2,

SMC_DI _TYPE_CHARP,

&ilter_id

K
if (ret !'= SMC_RET_SUCCESS) {

/*Change to db of interest*/

/*Connection id*/
/*View id*/

/*Pointer to a data
itemw thin the view
to be filtered*/
[*Type of filter*/
/*Filter val ue*/
/*Nunber of elenents
in array of filter
val ues*/

[*dat atype of filter
val ues*/

/*Val ue is assigned by
this function call*/

printf("Filters were not applied. Continuing execution.\n");

}

Set al arns.

For commentary, see “ Step 5: set alarms” on page 11

wor kUni on. | ongVal ue = 1;

ret=snc_create_al armex(connect?2_id,

db_info view.id,

/*Val ue above which

alarmis triggered*/
[*Connection id*/
[*View id*/

&b _info_view 11], /*Pointer to a data

&nor kUni on,

SMC_ DI _TYPE_LONG,

itemw thin the view
to which the alarm
is applied*/

[/ *Wher e val ue that
triggers the alarm
is |ocated*/

/*dat atype of item
to which alarmis
appl i ed*/

SMC_ALARM A NOTI FY, /*Trigger alarm

cal | back function.
This is the only

25

A sample Monitor Client Library program

action possi bl e when
the server node is
LI VE. */

NULL, /| *For server npde H STORI CAL,
this is where log file to be
witten to or programto be
run is specified. For server
mode LIVE, this field is
i gnored. */

[*The following is a string that is passed to the alarm call back function.*/
"Physical read occurred in database.",

al ar nCal | back, /*Al arm cal | back
function*/
&alarmid /*Variable into which

alarmid is placed.*/
)
if (ret '= SMC RET_SUCCESS) {
printf("A armwas not applied. Execution continuing.\n");
}
#endi f
/*

** Request data and process results.
*/

For commentary, see “Step 6: request performance data and process results’
on page 12

/*
** CGet data fromfirst connection. As server nanme and version
** do not change during the connection, we only get it once.
** Post the tinme when the refresh was done.
*/
if (connectl_id !'= CONNECT_NONEXI STENT) { /*If the connect is
not successful,the
error callback is
triggered. For a
friendlier display,
we check first.*/
ret=snc_refresh_ex(connectl1_id, /[*1 D of connect*/
0 /*STEP not used in
I'ive connection*/
)
if (ret '= SMC_RET_SUCCESS) {
printf("refresh call failed on first connect ID.\n");

26

CHAPTER 1 Getting started with Monitor Client Library

el se { / *Check row count even though only one
row is expected in this case. If no
rows are returned, get_dataitemval ue
calls will return errors.*/
ret=snt_get _row_count(connectl id,
server _view_id,
#_of _rows);
if (ret !'= SMC_RET_SUCCESS){
printf("Get row count call failed.\n");

}
el se {
if (numof_rows > 0){
/*
** A get_dataitemvalue call is nade for each itemin the view

** The retrieved data is stored in an array of SMC VALUE_UNI ONs.
*/
for (index=0;index <NUM SERVER DATA | TEMS; i ndex++) {
ret=snc_get dataitem val ue(connect1_id,

server _view_id,

&server _info_viewindex],/*Look at
each data
itemin
the view/

0, /*Only one row of

data is returned for
this particular view,
so the value for row
is hard-coded in this
case. */
&server _dat a[i ndex] /*Retrieved
data stored

here*/
)
} /*End for | oop*/
/*
** Display the returned data.
*/
printf("Adaptive Server Enterprise nane is: \
%.\n",server _data[0].stringVal ue);
printf("Adaptive Server Enterprise version is: \
%.\n",server_data[1].stringVal ue);
printf("Date and time is: \
%.\n",server_data[2].stringVal ue);
/*

* *

The application is responsible for freeing nenory allocated
** py the Monitor Client Library for string nmenbers of

27

A sample Monitor Client Library program

** SMC VALUE UNIONs. This also illustrates the use of the
** snt_get _dataitemtype function call.
*/
for (index=0;index <NUM SERVER DATA | TEMS; i ndex++) {
ret=snc_get _dataitemtype(&server_info_viewindex], \
&datai tem type);
if (ret !'= SMC _RET_SUCCESS) {
printf("CGet dataitemtype failed for item%d \
in server_info_view\n");

}
el se {

if (dataitemtype == SMC DI _TYPE_CHARP) {

free(server_data[index].stringVal ue);

}

}
} /*End for |oop*/
} /*End if nunber of rows > 0*/
} /*End case get_row_count was successful */
} /*End case snt_refresh_ex call was successful */
} /*End case connect still valid*/

/*
** Get the data fromthe views in the second connection to see
** how the data changes over tine. To do this, we sanple
** NUM_OF_SAMPLES tines, pausing SAVPLE | NTERVAL tinmes between
** each sanple. The process of retrieving data is within a | oop.
*/
for (iterations=0;iterati ons<NUM OF SAMPLES; iterations++){

sl eep(SAMPLE_I NTERVAL) ;

ret=snct_refresh_ex(connect2_id, / *Not e second connection
specified for refresh*/
0 /*Step not used in live

connecti on*/
)
if (ret == SMC_RET_SUCCESS) {
if (db_info_view.id !'= VIEWNONEXI STENT){ /*Attenpting
get _row_count for
nonexi stent view
will cause errors
so check if view
was actual ly
creat ed*/
ret=snc_get _row_count (connect2_id,
db_info_view.id,
#_of _rows [*Multiple rows will
be returned. For
each row of data

28

CHAPTER 1 Getting started with Monitor Client Library

returned, use
get _datai tem val ue
| oop. Function call
puts nunber of rows
returned into
vari abl e. */
)
for(row=0; row<knum of _rows; r ow++) {
for (index=0;index <NUM DB_| NFO | TEMS; i ndex++) {
ret=snc_get dataitemval ue(connect?2_id,
db_info_view_.id, /*View specified for
get _dataitemval ue. */
&db_i nfo_vi ew i ndex],
row, [*Multiple rows in
this case */
&db_dat a[i ndex]
)
if (ret '= SMC RET_SUCCESS) {
printf("Get dataitemvalue failed for data item\
%.\n",db_i nfo_l abel s[index]);
}
el se {
printf("%",db_i nfo_| abel s[index]);
ret=snc_get _dataitemtype(&db_info_viewindex],\
&dat ai tem type);
if (ret !'= SMC_RET_SUCCESS){
printf("Get data itemtype failed for data item\
%.\n",db_i nfo_viewindex]);
}
el se {
switch (dataitemtype) {
case SMC_DI _TYPE_CHARP:
printf("%.\n",db_data[index].stringVal ue);
free(db_data[i ndex].stringVal ue);
/*Application is responsible for freeing
menory allocated for strings by library*/
br eak;
case SMC DI _TYPE LONG
printf("%.\n", db_data[index].|ongVal ue);
br eak;
case SMC DI _TYPE_DOUBLE: /*Rates are generally
floating point variabl es*/
printf("% .\n", db_data[index].doubl eval ue);
br eak;
defaul t:
printf("Unknown datatype encountered.\n");

29

A sample Monitor Client Library program

br eak;
} /*End switch*/
} /*End case get_dataitemtype successful */
} /*End case get_dataitem val ue successful */
} /*End for |loop to get each data item val ue*/
} /*End for loop to get each row of data*/
} /*End case view exists*/

/*
** Retrieve data fromsecond view in refresh.
** Processing is nuch the sane.
*/
if (nw_info_view.id !'= VIEWNONEXI STENT){ /*Attenpting
get _row_count for
nonexi stent vi ew
causes errors, Sso
check to see if
view was actual ly
creat ed*/
ret=snct_get _row_count(connect2_id,
nw_i nfo_view._id,
#_of _rows /*This is a server-
wi de view so only
one row should be
returned*/
)
if (numof_rows > 0){
for (index=0;index <NUM NW.INFO | TEMS; i ndex++) {
ret=snc_get _datai tem val ue(connect 2_i d,
nwinfo view.id, /*Note view
specified for
get _datai tem val ue*/
& w_byt es_vi ew i ndex],

0, /*One row in this case*/
&w _dat a[i ndex]
E

if (ret !'= SMC_RET_SUCCESS) ({
printf("Get dataitemvalue failed for data item\
%.\n", nw_info_l abel s[index]);
}
el se {
printf("%", nw_info_|abel s[index]);
ret=snc_get _dataitemtype(&w_bytes_view index],\
&dataitemtype);
if (ret !'= SMC_RET_SUCCESS){
printf("Get data itemtype failed for data item\
%.\n", nw_bytes_view index]);

30

CHAPTER 1 Getting started with Monitor Client Library

}
el se {
switch (dataitemtype) {
case SMC DI _TYPE CHARP:
printf("%.\n", nw_data[index].stringVal ue);
free(nw_data[index].stringVal ue);
/*Application is responsible for freeing
menory allocated for strings by library*/
br eak;
case SMC DI _TYPE LONG
printf("%l.\n", nw_data[index].!|ongVal ue);
br eak;
case SMC DI _TYPE_DOUBLE: /*Rates are generally
floating point
vari abl es*/
printf ("% .\n", nw_data[index].doubl eval ue);
br eak;
defaul t:
printf("Unknown datatype encountered.\n");
br eak;
} /*End switch*/
} /*End case get_dataitemtype successful */
} /*End case get_dataitem val ue successful */
} /*End for |oop to get each data item val ue*/
} /*End if any rows of data returned*/
el se {
printf("No data returned for network info view.\n");
}
} /*End case view exists*/
} /*End case refresh successful */
el se {

printf("Refresh of second connect failed. \
Return code is %.\n",ret);
}
} /*End for |loop for number of iterations*/
/*
** This shows how to drop filters and alarns. It is not necessary
** to do this prior to closing a connection, as it is done
** automatically when the connection is closed. Filters nay be
** dropped, for exanple, to see the filtered results of a query
** followed by the unfiltered results.
*/
#i fdef OPTI ONAL_CALLS
ret=snc_drop_filter(connect2_id,db_info view.id, filter_id);
if (ret !'= SMC_RET_SUCCESS) {
printf("Attenpt to drop filter failed.\n");

31

A sample Monitor Client Library program

}
ret=snc_drop_al arn{connect2_id,db_info_view.id,alarm.id);
if (ret '= SMC RET_SUCCESS) {
printf("Attenpt to drop alarmfailed.\n");
}
#endi f
/*
** Get another tine stanp before di sconnecting. To do this,
** do a refresh on the first connection again and only display
** the tine stanp data returned.
*/
if (connectl_id !'= CONNECT_NONEXI STENT) ({
ret=snc_refresh_ex(connectl_id, 0);
if (ret !'= SMC_RET_SUCCESS) {
printf("refresh call failed on first connect ID.\n");
}
el se { [*Check row count even though
only one row is expected. If
no rows are returned,
get _dataitemvalue calls
will return errors.*/
ret=snc_get _row _count(connectl id,
server_view. id,
#_of _rows);
if (ret !'= SMC_RET_SUCCESS){
printf("Get row count call on first connection \
failed.\n");
}

el se {
if (numof_rows > 0){
ret=snt_get dataitemval ue(connect1_id,

server _view_id,

&server_info_view 2], /*In this case
we are only
interested in
the third data
itent/

0, /[*Only one row of data
is returned for this
particular view, so the
value for row is hard-
coded in this case.*/

&server _dat a[2]

)

printf("Date and tinme on concl usion of nonitoring:\
%\ n", server_data[2] .stringVal ue);

32

CHAPTER 1 Getting started with Monitor Client Library

free(server_data[2].stringVal ue);
/*Application nust free string nmenory returned
by I'ibrary*/
} /*End if row of data returned*/
} /*End case get_row _count successful */
} /*End case refresh successful */
} /*End case connection exists*/

| *
** Cl ose and deal |l ocate the connecti on.
*/

For commentary, see “ Step 7: close and deallocate connections” on page 13

/*
** (C eanup. This consists of closing all connections, then
** de-allocating them Alternatively, connections can be re-used.
*/
ret=snct_cl ose(connect 1 id,
SMC_CLOSE_REQUEST /*Close only if no
out st andi ng conmmands
(only close request type
currently supported)*/
)
if (ret !'= SMC RET_SUCCESS) {
printf("Attenpt to close first connection failed. \
Return code is %.\n",ret);
}
ret=snt_cl ose(connect2_i d, SMC_CLOSE_REQUEST) ;
if (ret !'= SMC_RET_SUCCESS) {
printf("Attenpt to close second connection failed. \
Return code is %.\n",ret);
}
/*
** Connections can be re-used at this point, for exanple, to
** connect to different servers. However, we de-allocate them
*/
ret=snc_connect _drop(connectl_id);
if (ret !'= SMC RET_SUCCESS){
printf("Attenpt to drop first connection failed. \
Return code is %.\n",ret);
}
ret=snc_connect _drop(connect2_id);
if (ret !'= SMC RET_SUCCESS){
printf("Attenpt to drop second connection failed. \
Return code is %.\n",ret);

33

A sample Monitor Client Library program

}
return(SMC_RET_SUCCESS) ;

} [*End mai n*/
/*

** Cal | back functions
For commentary, see “Step 1: define error handling” on page 5.

*/
SMC VA D errorCal | back(
SMC_CONNECT_I D connect | D,

SMC_COMVAND | D comandl| D, /*Val ue internal to Monitor
Client Library*/

SMC VA DP user Dat aHandl e / *User -defined pointer. Set by
snmc_connect _propscal | */

)

{

SMC_SI ZET ret;

SMC_VALUE_UNI ON errorlnfo; /*Used for getting information
from snc_get _conmand_i nfo
function call*/

SMC_SI ZET returned_nsg_| engt h;

printf ("Inside new error callback.\n");

/*

** Use snt_get _conmand_i nfo function call to get information
** fromerror and al arm cal | backs.

*/
ret =snt_get _conmand_i nf o(connect | D,

comuand| D,

SMC_| NFO_ERR_MAPSEVERI TY, /*Information
request ed about
conmand*/

&errorlnfo, /[*Where information

returned about
conmmand i s placed*/

NULL /*Value is nuneric

so length of returned
dat a not needed*/
)
if (ret '= SMC RET_SUCCESS) {
printf("get_command_info call requesting error map \
severity failed. Error returned is: %l\n",ret);
}
el se{
printf("Mnitor Cient Library error severity level is: \
%\ n", errorlnfo. sizetVal ue);
}

34

CHAPTER 1 Getting started with Monitor Client Library

ret =snt_get _conmand_i nf o(connect | D,
comand| D,
SMC | NFO_ERR_NMSG,
&errorlnfo,
& et urned_nsg_| ength /*Find string
I ength */

if (ret !'= SMC_RET_SUCCESS){
printf("get_command_info call requesting error nessage \
failed. Error returned is: %\n",ret);
}
el se{
printf("Error nessage text is: 9%\n",errorlnfo.stringVal ue);
free(errorlnfo.stringVal ue);
[*Application is responsible for freeing string buffer
nmenory al l ocated by library*/
}
ret=snc_get _conmand_i nf o(connect | D,
comandl| D,
SMC_| NFO_ERR_NUM
&errorlnfo,
NULL
)
if (ret !'= SMC_RET_SUCCESS)
printf("get_command_info call requesting error nunber \
failed. Error returned is: %\n",ret);

}
el se{
printf("Error nunber is: %\ n",errorlnfo.sizetVal ue);
}
ret =snt_get _conmand_i nf o(connect | D,

comandl| D,
SMC_| NFO_ERR_SEVERI TY,
&errorl nfo,
NULL
)

if (ret !'= SMC_RET_SUCCESS)

printf("get_conmmand_info call requesting error severity \
failed. Error returned is: %\ n",ret);

}
el se{
printf("Error severity level is: %\ n",errorlnfo.sizetVal ue);
}
ret =snt_get _conmand_i nf o(connect | D,

comuand| D,
SMC | NFO ERR_SOURCE,

35

A sample Monitor Client Library program

&errorlnfo,

NULL
)

if (ret !'= SMC_RET_SUCCESS)
printf("get_conmand_i nfo call

requesting error source \

failed. Error returned is: %l\n",ret);

}

el se{

printf(" Error source is: %l\n",errorlnfo.sizetValue);

}

ret=snc_get _conmand_i nf o(connect | D,
comandl D,

SMC_| NFO_ERR_STATE,
&errorlnfo,

NULL
)

if (ret !'= SMC_RET_SUCCESS)
printf("get_conmand_i nfo call

requesting state failed. \

Error returned is: %\n",ret);

}

el se{

printf(" Error state is: %\n",errorlnfo.sizetValue);

}
/*

** Denmonstrate use of userDataHandl e.

This value was set as a

** connection property for the connection in the nain program and

** |s passed to this function.
*/
i f (userDataHandl e != NULL){

printf("Connection on which error occurred is \

%.\n", user Dat aHandl e) ;

}
}

/*Al arm cal | back*/

SMC VA D al arntal | back(
SMC _CONNECT _I D connect | D,
SMC_COWMVAND_| D conmandl D,

SMC VA DP user Dat aHandl e

)

{

#defi ne MSG_BUFFER_LENGTH 80
SMC_SI ZET ret;

SMC_VALUE_UNI ON al arm nf o;

/*End errorCall back */

/*Value internal to Monitor
Client Library*/

/*Union into which requested
data is placed*/

SMC_SI ZET returned_nsg_| engt h;

36

CHAPTER 1 Getting started with Monitor Client Library

printf ("Alarmcallback triggered.\n");
/*
** Use snt_get_command_i nfo function call to get information
** fromerror and al arm cal | backs.

*/
ret =snt_get _conmand_i nf o(connect | D,
comandl| D,
SMC_| NFO_ALARM ALARM D,
&al ar m nf o,
NULL
)
if (ret !'= SMC_RET_SUCCESS)
printf("get_command_info call failed. \
Error returned is: %",ret);
}
el se{
printf("AlarmIDis: %\ n",alarm nfo. sizetVal ue);
}
/*

** This denonstrates the use of the SMC_| NFO ALARM VALUE_ DATATYPE
** information that m ght be useful in a generic alarmcall back
** function.
*/
ret=snc_get _conmand_i nf o(connect | D,
commandl| D,
SMC_| NFO_ALARM VALUE_DATATYPE,
&al ar m nf o,
NULL
)
if (ret !'= SMC_RET_SUCCESS)
printf("get_commuand_info call failed. \
Error returned is: %",ret);
}
el se{
swi t ch(al arm nf o. i nt Val ue) {
case SMC DI _TYPE_ | NT:
ret =snt_get _conmand_i nfo(connect| D,
comandl| D,
SMC_| NFO_ALARM CURRENT_VALUE,
&al ar m nf o,
NULL
)
if (ret !'= SMC_RET_SUCCESS){
printf("get_command_info call failed. \
Error returned is: %",ret);

37

A sample Monitor Client Library program

el se {
printf("Current value of alarned data itemis:\
%l.\n", al arm nfo.intVal ue);
}
br eak;
case SMC DI _TYPE_LONG
ret =snt_get _conmand_i nf o(connect | D,
comrandl D,
SMC_| NFO_ALARM CURRENT_VAL UE,
&al arm nf o,
NULL
)
if (ret !'= SMC _RET_SUCCESS) {
printf("get_command_info call failed. \
Error returned is: %l",ret);

}
el se {
printf("Current value of alarned data itemis: \
%l.\n", al arn nfo.longVal ue);
}
br eak;

case SMC DI _TYPE DOUBLE:
ret =snc_get _conmand_i nf o(connect | D,
command| D,
SMC_| NFO_ALARM CURRENT_VALUE,
&al ar m nf o,
NULL
)
if (ret !'= SMC RET_SUCCESS) {
printf("get_command_info call failed. Error returned is: %", ret);

}
el se {
printf("Current value of alarned data itemis: \
% .\n", al ar m nf o. doubl eVal ue);
}
br eak;
defaul t:
printf("lnvalid value returned for datatype of \
current alarmvalue.\n");
br eak;
} /*End switch*/
}
ret =snt_get _conmand_i nf o(connect | D,
conmandl D,
SMC_| NFO_ALARM _ROW
&al arm nf o,

38

CHAPTER 1 Getting started with Monitor Client Library

NULL
)
if (ret !'= SMC RET_SUCCESS) {
printf("get_conmand_info call failed. \
Error returned is: %l",ret);
}
el se{
printf("Row of data which triggered alarmis: \
%\ n", al ar m nf 0. si zet Val ue) ;
}
ret=snc_get _conmand_i nf o(connect | D,
comandl| D,
SMC_| NFO_ALARM VALUE_DATATYPE,
&al ar m nf o,
NULL
)
if (ret !'= SMC_RET_SUCCESS)
printf("get_conmand_info call failed. \
Error returned is: %",ret);
}
el se{
swi tch(al arm nfo. i nt Val ue) {
case SMC DI _TYPE | NT:
ret=snc_get _conmand_i nf o(connect | D,
comandl| D,
SMC_| NFO_ALARM THRESHOLD VALUE,
&al ar m nf o,
NULL
)
if (ret !'= SMC RET_SUCCESS){
printf("get_commuand_info call failed. \
Error returned is: %",ret);
}
el se {
printf("Value of data item exceeded alarmtriggering \
value of: %.\n",al arm nfo.intVal ue);
}
br eak;
case SMC DI _TYPE_LONG
ret=snc_get _conmand_i nf o(connect | D,
comand| D,
SMC_| NFO_ALARM THRESHOLD VALUE,
&al ar m nf o,
NULL
)
if (ret !'= SMC RET_SUCCESS){

39

A sample Monitor Client Library program

40

printf("get_command_info call failed. \
Error returned is: %l",ret);
}
el se {
printf("Value of data item exceeded alarmtriggering \
val ue of: %l.\n", al arnm nfo. | ongVal ue);
}
br eak;
case SMC DI _TYPE DOUBLE:
ret =snc_get _conmand_i nf o(connect | D,
commandl| D,
SMC_| NFO_ALARM THRESHOLD VALUE,
&al arm nf o,
NULL
)
if (ret !'= SMC RET_SUCCESS) {
printf("get_conmmand_info call failed. \
Error returned is: %l",ret);
}
el se {
printf("Value of data item exceeded alarmtriggering\
val ue of: 9% .\n", al arm nfo. doubl eVal ue);
}
br eak;
defaul t:
printf("lnvalid value returned for datatype of \
THRESHOLD al arm val ue.\n");

br eak;
} /[*End switch*/
}
ret =snt_get _conmmand_i nf o(connect | D,
comrandl D,
SMC_| NFO_ALARM TI MESTAMP,
&al arm nf o,
&r et urned_nsg_| ength
)

if (ret !'= SMC_RET_SUCCESS)
printf("get_command_info call failed. \
Error returned is: %l",ret);
}
el se{
printf("Tine when alarmwas triggered is: \
%\ n", al arm nfo. stringVal ue);
free(alarm nfo.stringValue); /*Application is responsible
for freeing string buffer nenory
allocated by library.*/

CHAPTER 1 Getting started with Monitor Client Library

}

ret =snc_get _conmand_i nf o(connect | D,
comand| D,
SMC_| NFO_ALARM VI EW D,
&al ar m nf o,
NULL
)
if (ret !'= SMC_RET_SUCCESS)
printf("get_conmand_info call failed. \
Error returned is: %l",ret);

}
el se{
printf("1D of view which triggered alarmis: \
%l.\n", al arm nf o. si zet Val ue) ;
}

/*End newAl ar nCal | back*/

41

A sample Monitor Client Library program

42

CHAPTER 2 Data Items and Statistical Types

This chapter contains the following topics:

Topics Page
Overview 43
Result and key dataitems 43
Dataitems and views 44
Dataitem definitions 47

Overview

A dataitemisaparticular piece of performance datathat can be obtained

by using Monitor Client Library. A statistical type specifies the

calculations to be performed and the duration for which to report the data

collected by the dataitem.

This chapter describes the types of dataitems and statistical types. It also

describes each data item and its characteristics.

Monitor Client Library terminology is defined in “Overview” on page 1.

Result and key data items

Dataitems are classified as keys or results:

¢ A key data item refines the amount of detail in aview and usualy
resultsin additional rowsreturned when aview isrefreshed. With the
inclusion of each successive key, envision adding the word “per” toa
view definition. For example, start with the Page 1/0 result dataitem.
Refine the granularity by adding the Database key data item, Page
I/0s“per” Database. Further refine the granularity by adding the

Object key dataitem, Page 1/Os “per” Database “per” Object.

43

Data items and views

e A result data item returns performance data at the level of detail
determined by the key dataitemsin aview. If no key dataitems are
specified, only one row of datais returned.

Note A dataitem’sdesignation asaresult or key isacharacteristic of the data
item and is independent of the statistical type associated with the dataitem in
aview.

Data items and views

A view usually contains amix of key and result data items. This mixture of
keys and results provides flexibility in determining the amount of detail of the
data to be returned. The exception is server-wide data, such as transaction or
network activity data. For server-wide data, no key dataitemsare specified and
only one row of datais returned.

Table 2-1 shows examples of data returned by views.

Table 2-1: Examples of data returned by views

View defined with Returns
SMC _NAME _PAGE IO page |/ Cs for the whole server
Row resul ts:

Page 1/ 0

145
SMC_NAME_SPID, page |/ O per process
SMC_NAME_LOGIN_NA Row resul ts:
ME, SPI D Logi n Name Page 1/0
SMC_NAME_PAGE IO -
(where SPID isakey data 3 sa 45
item) 5 j oe 100

44

CHAPTER 2 Data Items and Statistical Types

View defined with Returns

SMC_NAME_SPID, page |/ O per database table per process
SMC_NAME_DB_ID, Row resul ts:

SMC_NAME OBJ ID, SPI D DBI D Obj I D DBName Obj Nanme Pagel O
SMC NAME DB NAME, @ ----------mmmmmmmmmmm oo o
SMC_NAME_OBJ NAME, 1 5 208003772 pubs?2 titles 10
and 1 5 336004228 pubs2 bl urbs 5
SMC_NAME_PAGE_IO 5 5 22003430 pubs?2 sal es 100

(where SMC_NAME_SPID,
SMC_NAME DB_ID, and
SMC_NAME_OBJID are
key dataitems)

Rows with no data versus no rows in views

When thereis no activity to report, some data items cause an empty row (that
is, arow with zero values for result data items) to appear in aview, and other
dataitems cause the row to be omitted. The rules controlling whether empty
rows appear in aview are:

» Server level dataitemsawaysreturn arow, even when thereisno activity
to report.

* Viewsthat contain the key dataitem SMC_NAME_SPID or
SMC_NAME_APPLICATION_NAME only report on processes that are
active as of the end of the sample period.

* Viewsthat contain the key dataitems SMC_NAME_OBJ ID or
SMC_NAME_ACT_STP_ID omit the row when there is no activity to
report during the sample period.

* Viewsthat contain keys other than those listed in the previous bullets
return rows when there is no activity.

Server-level status

Some dataitems are available only at the server level. Views with server-level
dataitems contain only result data items and provide performance data
summarized over Adaptive Server.

45

Data items and views

Combining data items

Dataitems cannot be combined indiscriminately. The absence or presence of a
key dataitem in aview determines which other dataitems are allowed in the
view.

If aview containsakey dataitem, all result dataitemsin the view must bevalid
for thekey dataitem. Also, for each result dataitemin aview, al required keys
for that result data item must be in the view.

If aview doesnot contain akey dataitem, it caninclude any dataitem that does
not require akey.

Result and key combinations

In some cases, if you use an optional key data item, you must also use one or
more others. In the data item descriptions in this chapter, data items that have
thisrequirement are grouped with the other required dataitemsin brackets and
separated by aplus sign (+).

Not all result dataitems require akey dataitem. If aview contains only result
dataitems, by default the summary is at the server level. The result dataitems
that have only optional keys can be used with server-level dataitemswhen no
key dataitem isincluded in the view.

To combine various result data items within a view, match common key data
items.

Connection summaries

Some views consume Monitor Server connection summaries. For information
about Monitor Server connection summaries, refer to the Adaptive Server
Enterprise Monitor Server User’s Guide.

Current statement and application name data items

46

If you want to get data for a current statement dataitem
(SMC_NAME_CUR_STMT_x) or SMC_NAMEAPPLICATION NAME, the
monitor client application must connect to the monitor server and create the
view before you start the application you are monitoring.

CHAPTER 2 Data Items and Statistical Types

Data item definitions

This section lists dataitems in aphabetical order with the following

information:
e Description

e Server level status

¢ Result or key designation

e For result dataitems, required keys and optional keys

e For key dataitems, result data items that require the key dataitem and
result data items that can use the key dataitem, but do not require it

e Versioncompatibility: either SQL Server 11.0 or Adaptive Server 11.5and

later
e Valid statistical types

The valid statistical types are as follows:
e SMC_STAT_VALUE_SAMPLE

e SMC_STAT_VALUE_SESSION

* SMC_STAT_RATE_SAMPLE

e SMC_STAT_RATE_SESSION

e SMC_STAT_AVG_SAMPLE

e SMC_STAT_AVG_SESSION

The possible datatypes for a dataitem are:

e LONG-Ilong

¢ ENUMS-—integer

e DOUBLE —double
¢ CHARP - character
e DATIM —date/time

For more information about enumerated types, see Appendix B, “ Datatypes

and Structures”.

Note Not all statistical types are available for each data item.

47

Data item definitions

You cannot use SMC_NAME_SPID and
SMC_NAME_APPLICATION_NAME in the same view.

Deciphering the names of data items

The syntax of adataitem’s name is an abbreviation of a description of the
information it reports. All data items start with SMC_NAME. The remaining
components of the name are either English words, abbreviations, or both. The
abbreviations and their meanings are:

* ACT —active

* APP-application

e CNT —count (number of)
« CUR-—current

* DATIM — date and time

* DB —database

* DEV —device

* ID —identification number
* IMMED —immediate

e 1O —input/output (page reads and writes)
e KPID —apersistent process ID
e MAX —maximum

e MEM —memory

e NET - network

* NUM —number

e OBJ-database object
 PCT — percent

e PKT —packet

* PROC - process

* RCVD —received

* REF -referenced

48

CHAPTER 2 Data Items and Statistical Types

e SPID —server process ID
e STMT — statement

e STP-stored procedure

e XACT —transaction

The dataitems described in Historical Server User’s Guide are equivalent to
these data items, but use a natural language naming convention.

SMC_NAME_ACT_STP_DB_ID

Description

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for
which this key is
optional

Reports the database identification number of the active stored procedure.
11.0 and later

Key

No

SMC_NAME_ACT_STP_DB_NAME

SMC_NAME_ACT_STP_NAME

SMC_NAME_ACT_STP_OWNER_NAME

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_EXECUTION_CLASS

SMC_NAME_STP_LINE_TEXT

SMC_NAME_STP_NUM_TIMES EXECUTED

SMC_NAME_LOCKS GRANTED_IMMED

SMC_NAME_LOCKS GRANTED_WAITED

SMC_NAME_LOCKS NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_|O

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

49

Data item definitions

Statistic types and
datatypes

SMC_NAME_ACT_STP_DB_NAME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
LONG

Reports the database name of the active stored procedure.

11.0 and later

Result

No

SMC_NAME_ACT_STP_DB_ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

SMC_NAME_ACT_STP_ID

Description

Version compatibility
Data item type
Server level
Required keys

Result data items that
require this key

50

Reports the identification number of the active stored procedure.

11.0 and later

Key
No

SMC_NAME_ACT_STP DB_ID

SMC_NAME_ACT_STP_NAME

SMC_NAME_ACT_ STP_ OWNER_NAME

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_EXECUTION_CLASS

SMC_NAME_STP_LINE_TEXT

SMC_NAME_STP_NUM_TIMES EXECUTED

CHAPTER 2 Data Items and Statistical Types

Result data items for

which this key is SMC_NAME_LOCKS_GRANTED_IMMED

optional SMC_NAME_LOCKS GRANTED WAITED

SMC_NAME_LOCKS NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_|O

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

Statistic types and

datatypes VALUE_ |[VALUE_ |RATE_ |RATE_ |AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_ACT_STP_NAME

Description Reports the name of the active stored procedure.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC _NAME_ACT_STP DB _ID, SMC NAME_ACT STP_ID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

SMC_NAME_ACT_STP_OWNER_NAME

Description Reports the name of the owner of the active stored procedure.
Version compatibility 11.0 and later

Data item type Result

Server level No

51

Data item definitions

Required keys
Optional keys

Statistic types and
datatypes

SMC_NAME_ACT_STP DB_ID, SMC_NAME_ACT_STP_ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

SMC_NAME_APPLICATION_NAME

Description

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

52

Reports the name of each application for which other statistics are being
accumulated. Viewsthat contain SMC_NAME_APPLICATION_NAME only
report on processes that are active as of the end of the sample period.

SMC_NAME_APPLICATION_NAME is mutually exclusive with

SMC_NAME_SPID in aview.
11.0 and later

Key

No

SMC_NAME_APP_EXECUTION_CLASS

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_LOCKS GRANTED_IMMED

SMC_NAME_LOCKS GRANTED_WAITED

SMC_NAME_LOCKS NOT_GRANTED

SMC_NAME_NUM_PROCESSES

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_ | VALUE_ | RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
CHARP

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_APP_EXECUTION_CLASS

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the configured execution class, if any, for a given application name.
The name isreturned in one of the following formats:

e |If theapplication is bound to the execution class only with scope NULL,
the name of the execution classis returned.

« |If theapplication is bound to the execution class with a scope of NULL
and a scope of one or more logins, an asterisk (*) is appended to the name
of the execution class.

e If theapplication is bound to the execution class only with a scope of one
or more logins, an asterisk is returned.

11.0 and later

Result

No
SMC_NAME_APPLICATION_NAME

None

VALUE_ | VALUE_ | RATE_ |RATE_ |AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

CHARP

SMC_NAME_BLOCKING_SPID

Description

Version Compatibility
Data item type
Server level

Required keys

Optional keys

Reports the identification number of the process that holds alock that the
process indicated by the SMC_NAME_SPID dataitem iswaiting for. If a
processis not blocked, the Blocking SPID is zero.

11.0 and later
Result
No

SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_LOCK_STATUS

SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

53

Data item definitions

Statistic types and
datatypes

VALUE_ | VALUE_ |RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_CONNECT_TIME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the time elapsed (in seconds) since the process was started. If the
processwas active before you began monitoring it, connect timeisthetimeyou
have monitored this process.

11.0 and later

Result

No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
LONG LONG

SMC_NAME_CPU_BUSY_PCT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

54

Reports the percentage of the time when Adaptive Server isin aBusy state.

11.0 and later

Result
Yes

None

SMC_NAME_ENGINE_NUM

VALUE_ | VALUE_ |RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_CPU_PCT

Description

Version compatibility

Data item type
Server level

Required keys

Optional keys

Statistic types and

datatypes

Reports the percentage of time that a process or the set of processes running a
given application was in the Running state of the time that all processes were
in the Running state.

11.0 and later

Result

No

SMC_NAME_SPID or SMC_NAME_APPLICATION_NAME

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

SMC_NAME_ENGINE_NUM

VALUE_ | VALUE_ |RATE_ |RATE_ |AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

SMC_NAME_CPU_TIME

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

At server level (with no keys), reportsthetotal CPU “busy” time on the server.
When used with keys, reports on how much of that busy time was used by each
process, application, or engine.

11.0 and later
Result

Yes

None

SMC_NAME_ENGINE_NUM, SMC_NAME_SPID or
SMC_NAME_APPLICATION_NAME

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

55

Data item definitions

Statistic types and
datatypes

SMC_NAME_CPU_YIELD

Description

Version compatibility
Data item type
Server level
Required key
Optional keys

Statistic types and
datatypes

VALUE_ | VALUE_ |[RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

Reports the number of times that Adaptive Server yielded to the operating

system.

11.0 and later

Result
Yes

None

SMC_NAME_ENGINE_NUM

VALUE_ | VALUE_ | RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_CUR_APP_NAME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

56

Reports the name of the application that is executing on a particular process.
11.0 and later

Result
No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_CUR_ENGINE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of the Adaptive Server engine on which a process was
currently running.

11.0 and later

Result
No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
LONG

SMC_NAME_CUR_EXECUTION_CLASS

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the name of the execution class under which a processis currently

running.

11.5 and later

Result

No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

SMC_NAME_CUR_PROC_STATE

Description

Reports the current state of a process. The possible states are:

« None

e Alarm Seep

e Background

57

Data item definitions

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Enum

+ Bad Status
* Infected

e Lock Sleep
e Received Sleep
* Remotel/O
* Runnable

* Running

e Send Sleep
e Sleeping

e Stopped

e Sync Sleep
e Terminating
e Yielding
11.0 and later
Result

No

SMC_NAME_SPID

None

VALUE_ | VALUE_ |RATE_ |RATE_ | AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
ENUMS

SMC_PROC_STATE

SMC_NAME_CUR_STMT_ACT_STP_DB_ID

Description

Version compatibility

58

Reports the database ID of the stored procedure (including triggers, a special
kind of stored procedure) that contains the currently executing SQL statement
for aparticular process. If the currently executing SQL statement is not
contained in a stored procedure, thisID is zero.

11.5 and later

CHAPTER 2 Data Items and Statistical Types

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
LONG

SMC_NAME_CUR_STMT_ACT_STP_DB_NAME

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reportsthe database name of the stored procedure (including triggers, aspecia
kind of stored procedure) that contains the currently executing SQL statement
for aparticular process. If the currently executing SQL statement is not
contained in a stored procedure, this name is “**NoDatabase**".

11.5 and later
Result

No
SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

SMC_NAME_CUR_STMT_ACT_STP_ID

Description

Version compatibility

Data item type

Server level

Reportsthe ID of the stored procedure (including triggers, a special kind of
stored procedure) that contains the currently executing SQL statement for a
particular process. If the currently executing SQL statement isnot contained in
a stored procedure, thisID is zero.

11.5 and later
Result
No

59

Data item definitions

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
LONG

SMC_NAME_CUR_STMT_ACT_STP_NAME

Description

Reports the name of the stored procedure (including triggers, aspecial kind of
stored procedure) that contains the currently executing SQL statement for a
particular process. If the currently executing SQL statement isnot contained in
astored procedure, this nameis “**NoObject**".

Version compatibility 11.5 and later
Data item type Result
Server level No

Required keys

SMC_NAME_SPID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME

Description

Version compatibility

Data item type
Server level

Required keys
Optional keys

60

Reports the owner name of the stored procedure (including triggers, a special
kind of stored procedure) that contains the currently executing SQL statement
for aparticular process. If the currently executing SQL statement is not
contained in a stored procedure, this nameis “**NoOwner**”.

11.5 and later
Result

No
SMC_NAME_SPID

None

CHAPTER 2 Data Items and Statistical Types

Statistic types and
datatypes

VALUE_ | VALUE_ |RATE_ |RATE_ |AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

CHARP

SMC_NAME_CUR_STMT_ACT_STP_TEXT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the text of a particular stored procedure (including triggers, a special
kind of stored procedure) being executed for a particular process. If both
CUR_STMT_ACT_STP_DB_ID isequal to 0 and
CUR_STMT_ACT_STP_ID isequal to 0 then a stored procedure is not
currently executing and this text is a null-terminated empty string (*").

If the text is not available (because this stored procedure was compiled and its
text was discarded, or because the text is stored in an encrypted format), then
thistext is anull-terminated empty string ("").

11.5 and later
Result

No
SMC_NAME_SPID

None

VALUE_ | VALUE_ |RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

CHARP

SMC_NAME_CUR_STMT_BATCH_ID

Description

Version compatibility
Data item type
Required keys
Optional keys

Reportsthe ID of aparticular query batch being executed for a particular
process.

11.5 and later
Result
SMC_NAME_SPID

None

61

Data item definitions

Statistic types and
datatypes

VALUE_ | VALUE_ |RATE_ |RATE_ |AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_CUR_STMT_BATCH_TEXT

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Reports the text of a particular query batch being executed for a particul ar
process. Thistext can only beaninitial substring of the completetextin aquery
batch. The maximum amount of text stored in thisfield is determined by the
Adaptive Server configuration option max SQL text monitored and can be
monitored using SMC_NAME_CUR_STMT_BATCH_TEXXT ENABLED.

11.5 and later
Result

No
SMC_NAME_SPID

Statistic types and
datatypes

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE SESSION
CHARP

SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

62

Reports whether Adaptive Server is saving the SQL text of the currently
executing query batches, and if so, how much.

Value of 0 = saving SQL text disabled.

Value of 1 or more = maximum number of bytesof batch text per server process
that can be saved.

11.5 and later

Result
Yes
None

None

CHAPTER 2 Data Items and Statistical Types

Statistic types and

datatypes

VALUE_ | VALUE_ |RATE_ | RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_CUR_STMT_CONTEXT_ID

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the ID that uniquely identifies a stored procedure invocation within a
particular query batch being executed for a particular process.

11.5 and later

Result

No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE SESSION
LONG

SMC_NAME_CUR_STMT_CPU_TIME

Description

Version compatibility

Data item type
Server level
Required keys
Optional keys

Statistic types and

datatypes:

Reports the amount of time (in seconds) that the currently executing SQL
statement has spent in the running state.

11.5 and later

Result
No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

63

Data item definitions

SMC_NAME_CUR_STMT_ELAPSED_TIME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the amount of time (in seconds) that the currently executing SQL
statement has been running.

11.5 and later
Result
No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE SESSION
LONG

SMC_NAME_CUR_STMT_LINE_NUM

Reports the number of the line (within a query batch or stored procedure) that
contains the beginning of the currently executing SQL statement for a

particular process. The currently executing SQL statement isin the query batch
if CUR_STMT_ACT_STP_DB_ID isequal to 0 and
CUR_STMT_ACT_STP_ID isequal to 0. Otherwise, the currently executing
SQL statement isin the stored procedure uniquely identified by these two IDs.

11.5 and later

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

64

Result

No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the number of lock requests by the currently executing SQL statement
that were granted immediately or were not needed (because sufficient locking
was already held by the requestor).

11.5 and later

Result
No

SMC_NAME_SPID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_CUR_STMT_LOCKS_GRANTED WAITED

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED

Description

Version compatibility

Reportsthe number of lock requests by the currently executing SQL statement
that were granted after waiting.

11.5 and later

Result

No

SMC_NAME_SPID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

Reportsthe number of lock requests by the currently executing SQL statement
that were denied.

11.5 and later

65

Data item definitions

Data item type
Server level

Required keys

Result
No

SMC_NAME_SPID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_CUR_STMT_NUM

Description

Reports the number of the statement (appearing in a query batch or stored
procedure) that is the currently executing SQL statement for a particular
process. The currently executing SQL statement is in the query batch if both
CUR_STMT_ACT_STP_DB_ID isequal to 0 and
CUR_STMT_ACT_STP_ID isequal to 0. Otherwise, the currently executing
SQL statement isin the stored procedure uniquely identified by these two IDs.

A valueof zeroindicates partial datafor the currently executing SQL statement
(that is, this SQL statement began executing before monitoring began.
Performance metrics are avail able but numbers reflect only the time period
since the start of monitoring).

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_CUR_STMT_PAGE_IO

Description

66

Reports the number of combined logical page reads and page writes
accumulated by the currently executing SQL statement.

CHAPTER 2 Data Items and Statistical Types

Version compatibility 11.5 and later

Data item type Result

Server level No

Required keys SMC_NAME_SPID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ

Description

Reports the number of data page reads (satisfied from cache or from device
reads) accumulated by the currently executing SQL statement.

Version compatibility 11.5 and later
Data item type Result
Server level No

Required keys

SMC_NAME_SPID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ

Reports the number of data page readsthat could not be satisfied from the data
cache, accumulated by the currently executing SQL statement.

Description

Version compatibility 11.5 and later
Data item type Result
Server level No

Required keys
Optional keys

SMC_NAME_SPID

None

67

Data item definitions

Statistic types and

datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_CUR_STMT_PAGE_WRITE

Description

Reportsthe number of data pages written to a database device, accumulated by

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and

the currently executing SQL statement.
11.5 and later

Result

No

SMC_NAME_SPID

datatypes

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT

Description

Version compatibility

Data item type
Server level

Required keys
Optional keys

Reports the text of the query plan for a particular query being executed for a
particular connection.

If thetext isnot avail able (because Adaptive Server hasremoved thisplan from
its catalog of query plans), then thistext is anull-terminated empty string (*").

11.5 and later
Result

No
SMC_NAME_SPID

Statistic types and

datatypes

68

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_CUR_STMT_START TIME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the date and time, in the time zone of Adaptive Server, when the
currently executing SQL statement began running.

If this SQL statement began running before monitoring began, then thisisthe
date and time that activity was first encountered for this statement.

11.5 and later

Result

No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG

SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

DATM

SMC_NAME_CUR_STMT_TEXT BYTE_OFFSET

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the byte offset to the beginning of a statement within the query batch
or stored procedure being executed for a particular process. If both
CUR_STMT_ACT_STP_DB_ID isequal to 0 and
CUR_STMT_ACT_STP_ID isequal to O, then the statement is the currently
executing SQL statement in the query batch. Otherwise, the statement isthe
currently executing SQL statement isin the stored procedure uniquely
identified by these two IDs (above).

11.5 and later
Result

No
SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

LONG

69

Data item definitions

SMC_NAME_DATA_CACHE_CONTENTION

Description

Reportsthe fraction of the requests for adata cache’s spinlock that were forced

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

towait (spinlock waits divided by spinlock requests).
11.0 and later

Result
No

DATA_CACHE_ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

SMC_NAME_DATA_CACHE_EFFICIENCY

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of cache hits per second per megabyte of a particular data

cache.

11.0 and later

Result

No

DATA_CACHE_ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

SMC_NAME_DATA_CACHE_HIT

Description

Version compatibility

Data item type

70

Reports the number of times a page read was satisfied from a particular data

cache.

11.0 and later

Result

CHAPTER 2 Data Items and Statistical Types

Server level
Required keys
Optional keys

Statistic types and
datatypes

No

DATA_CACHE_ID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_DATA_CACHE_HIT_PCT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the fraction of the page reads satisfied, which is computed from the
following formula:

cache_hits/ (cache_hits + cache misses) * 100

11.0 and later

Result

No

DATA_CACHE_ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

Note When SMC NAME DATA_ CACHE_MISS overstates the number of
physical page reads, SMC_NAME_DATA_CACHE_HIT_PCT understates
the percentage of cache hits.

SMC_NAME_DATA_CACHE_ID

Description

Version compatibility

Reportsthe ID of adata cache. Tables or indexes or both can be bound to a
specific data cache, or al objectsin a database can be bound to the same data
cache. No object can be bound to more than one data cache.

11.0 and later

71

Data item definitions

Data item type Key
Server level No

Result data items that

require this key SM C_NAM E_DATA_CACH E_CONTENTl ON

SMC_NAME_DATA CACHE_EFFICIENCY

SMC_NAME_DATA_CACHE_HIT

SMC_NAME_DATA_CACHE_HIT_PCT

SMC_NAME_DATA_CACHE_LARGE_IO_DENIED

SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED

SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED

SMC_NAME_DATA_CACHE_MISS

SMC_NAME_DATA_CACHE_NAME

SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY

SMC_NAME_DATA_CACHE_REF _AND_REUSE

SMC_NAME_DATA_CACHE_REUSE

SMC_NAME_DATA_CACHE_SIZE

Result data items for SMC_NAME_DATA_CACHE_REUSE DIRTY
which this key is

optional

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_DATA_CACHE_LARGE_IO_DENIED

Description Reportsthe number of timesthe Adaptive Server buffer manager did not satisfy
requests (of the optimizer) to load data into a buffer in this data cache by
fetching more than one contiguous page from disk at atime.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys DATA _CACHE_ID
Optional keys None

72

CHAPTER 2 Data Items and Statistical Types

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of times the Adaptive Server buffer manager satisfied
requests (of the optimizer) to load data into a buffer in this data cache by
fetching more than one contiguous page from disk at atime.

11.0 and later

Result
No

DATA_CACHE_ID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of times the optimizer made requests (of the Adaptive
Server buffer manager) to load datainto a buffer in this data cache by fetching

more than one contiguous page from disk at atime.

11.0 and later

Result

No

DATA_CACHE_ID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

73

Data item definitions

SMC_NAME_DATA_CACHE_MISS

Description

Reportsthe number of timesthat a page read was satisfied from disk rather than

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

from a particular data cache.
11.0 and later

Result
No

DATA_CACHE_ID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

Note SMC_NAME_DATA_CACHE_MISSincludesfailed attemptsto locate
pages in the data caches during page allocation. Therefore, the number of
physical page reads reported may be overstated. If this occurs, the percentage
of datacache missesreported by SMC NAME _DATA CACHE HIT PCTis
understated.

SMC_NAME_DATA_CACHE_NAME

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

74

Reports the name of adata cache. Tables or indexes or both can be bound to a
specific data cache, or al objectsin adatabase can be bound to the same data
cache. No object can be bound to more than one cache.

11.0 and later
Result

No
DATA_CACHE_ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
CHARP

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and

Reports the ratio of pages in buffers that were both referenced and reused,
relative to al pagesin buffersin agiven cache that were reused.

If theratio islarge, then prefetching is effective; otherwise, prefetching is not
providing much benefit. This may suggest that a buffer pool should be
eliminated (or it may imply that a clustered index on sometableisfragmented,
and that the index should be dropped and recreated).

Note SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY ignores
buffersin the default buffer pool in each cache.

11.0 and later
Result

No
DATA_CACHE_ID

datatypes

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

SMC_NAME_DATA_ CACHE_REUSE

Description

Version compatibility
Data item type
Server level
Required keys

Optional keys

Reports the number of pages in buffers that were reused. A large value
indicatesahigh rate of turnover of buffersin the cache, and suggeststhat a pool
may betoo small. A zero value suggeststhat abuffer pool other than the default
buffer pool may be too large.

11.0 and later
Result

No
DATA_CACHE_ID

None

75

Data item definitions

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_DATA_CACHE_REUSE_DIRTY

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of times that a buffer that was reused had changes that
needed to bewritten. A non-zero value indicates that the wash sizeistoo small.

11.0 and later

Result

No

DATA_CACHE_ID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_DATA_CACHE_REF_AND_REUSE

Reports the number of pagesin buffers that were both referenced and reused.
This count is employed when determining the efficiency of prefetching buffers
(see SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY).

11.0 and later

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

76

Result
No

DATA_CACHE_ID

None
VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_DATA_CACHE_SIZE

Description Reports the size of a data cache in megabytes.
Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE

DATA_CACHE_ID

SMC_NAME_DB_ID

Description Reports the identification number of the database.
Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that
require this key

SMC_NAME_BLOCKING_SPID
SMC_NAME_DB_NAME
SMC_NAME_DEMAND_LOCK
SMC_NAME_LOCKS BEING_BLOCKED_CNT
SMC_NAME_OBJ NAME

SMC_NAME_OBJ TYPE
SMC_NAME_OWNER_NAME
SMC_NAME_TIME_WAITED_ON_LOCK

Result data items for
which this key is
optional

SMC_NAME_LOCKS GRANTED_IMMED
SMC_NAME_LOCKS GRANTED_WAITED
SMC_NAME_LOCKS NOT_GRANTED
SMC_NAME_PAGE_INDEX_LOGICAL_READ
SMC_NAME_PAGE_INDEX_PHYSICAL_READ
SMC_NAME_PAGE_HIT_PCT

77

Data item definitions

Statistic types and
datatypes

SMC_NAME_PAGE_|O

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

SMC_NAME_DB_NAME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the name of the database.
11.0 and later

Result
No
DB_ID

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

CHARP

SMC_NAME_DEADLOCK_CNT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

78

Reports the number of deadlocks.
11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_DEMAND_LOCK
Reports the character string (Y or N) that indicates whether or not alock has

Description

Version compatibility

Data item type
Server level

Required keys

Optional keys

Statistic types and

datatypes

been upgraded to demand lock status.

11.0 and later

Result
No

SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_LOCK_STATUS

SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

SMC_NAME_DEV_HIT

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG AVG
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
CHARP

Reports the number of times access to a device was granted.

11.0 and later

Result

Yes

None

SMC_NAME_DEV_NAME

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_DEV_HIT_PCT

Reports the fraction of device requests that were granted, which is computed
by dividing SMC_NAME_DEV_HIT into the result of
SMC_NAME_DEV_MISS multiplied by 100.

11.0 and later

Description

Version compatibility

79

Data item definitions

Data item type
Server level

Required keys
Optional keys

Statistic types and
datatypes

Result
Yes

None

SMC_NAME_DEV_NAME

SMC_NAME_DEV_|O

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

Reports the total of device reads and device writes.

11.0 and later

Result

Yes

None

SMC_NAME_DEV_NAME

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_DEV_MISS

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

80

Reports the number of times that access to a device had to wait.

11.0 and later

Result
Yes

None

SMC_NAME_DEV_NAME

CHAPTER 2 Data Items and Statistical Types

Statistic types and
datatypes

SMC_NAME_DEV_NAME

Description

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

Reports the name of each database device.

11.0 and later

Key

No

None

SMC_NAME DEV_HIT

SMC_NAME DEV_HIT_PCT

SMC_NAME_DEV_|O

SMC_NAME_DEV_MISS

SMC_NAME_DEV_READ

SMC_NAME _DEV_WRITE

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
CHARP

SMC_NAME_DEV_READ

Description

Version compatibility
Data item type
Server level
Required keys

Optional keys

Reports the number of reads made from a database device.

11.0 and later

Result
Yes

None

SMC_NAME_DEV_NAME

81

Data item definitions

Statistic types and
datatypes

SMC_NAME_DEV_WRITE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

Reports the number of writes made to a database device.

11.0 and later

Result

Yes

None

SMC_NAME_DEV_NAME

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_ELAPSED_TIME

Reportsthe timeincrement, in seconds, either from one datarefresh to the next

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

82

(sample) or from the creation of the view to the present session.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_ENGINE_NUM

Description

Version compatibility

Data item type

Server level

Result data items that
require this key

Result data items for
which this key is

optional

Statistic types and

datatypes

Reports the number of an Adaptive Server engine.
11.0 and later

Key

No

None

SMC_NAME_CPU_BUSY_PCT

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_CPU_YIELD

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_|O

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

LONG

SMC_NAME_HOST_NAME

Description

Version compatibility

Data item type
Server level
Required keys
Optional keys

Reportsthe name of the host computer that established a particular connection
to Adaptive Server.

11.0 and later
Result

No
SMC_NAME_SPID

None

83

Data item definitions

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
CHARP

SMC_NAME_KPID

Reportsthe Adaptive Server processidentification number that remains unique

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

over long periods of time.

11.0 and later

Result

No

SMC_NAME_SPID

SMC_NAME_LOCK_CNT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

84

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

Reports the number of locks. Thisis an accumulated value.

11.0 and later

Result

Yes

None

SMC_NAME_SPID, SMC_NAME_LOCK_TYPE,
SMC_NAME_LOCK_RESULT,
SMC_NAME_LOCK_RESULT_SUMMARY

VALUE_ | VALUE_ | RATE_ RATE_ AVG AVG
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_LOCK_HIT_PCT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and

Reports the percentage of successful requests for locks.
11.0 and later

Result

Yes

None

None

datatypes

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_ AVG AVG

SESSION

SAMPLE

SESSION

DOUBLE

DOUBLE

SMC_NAME_LOCK_RESULT

Description

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for
which this key is
optional

Reports the result of alogical lock request. Lock result values are:
e Granted immediately.

¢ Not needed; requestor already held a sufficient lock.

e Waited; requestor waited.

« Didnot wait; lock was not availableimmediately and the requestor did not
want the lock request to be queued.

« Deadlock; requestor selected as deadlock victim.
* Interrupted; the lock request was interrupted by attention condition.
11.0 and later

Key
No

None

SMC_NAME_LOCK_CNT

85

Data item definitions

Statistic types and
datatypes

Enum

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
ENUMS

SMC_LOCK_RESULT

SMC_NAME_LOCK_RESULT_SUMMARY

Reports the lock results summarized at a granted or not granted level.

Description

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

Enum

* Thelock result summary granted includes the granted, not needed, and
waited lock results.

e Thelock result summary not granted includes the did not wait, deadlock,
and interrupted lock results.

11.0 and later

Key
No

None

SMC_NAME_LOCK_CNT

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
ENUMS

SMC_LOCK_RESULT_SUMMARY

SMC_NAME_LOCK_STATUS
Reports the current status of alock. The lock status values are:
e Held and blocking
e Held and not blocking

e Requested and blocked

e Requested and not blocked

Description

86

CHAPTER 2 Data Items and Statistical Types

Version compatibility 11.0 and later
Data item type Key
Server level No

Result data items that
require this key

SMC_NAME_BLOCKING_SPID
SMC_NAME_DEMAND_LOCK
SMC_NAME_LOCK_STATUS CNT
SMC_NAME_LOCKS BEING_BLOCKED_CNT
SMC_NAME_TIME_WAITED_ON_LOCK

Result data items for None

which this key is

optional

Statistic types and

datatypes VALUE_ | VALUE_ RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
ENUMS

Enum SMC_LOCK_STATUS

SMC_NAME_LOCK_STATUS_CNT

Description Reports the number of locks in each lock status. Thisis a snapshot value.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys LOCK_STATUS

Optional keys None

Statistic types and

datatypes VALUE_ [VALUE_ [RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

87

Data item definitions

SMC_NAME_LOCK_TYPE

Description

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for

which this key is
optional

Statistic types and
datatypes

Enum

Reports the type of lock used by Adaptive Server. Adaptive Server protects
tables or data pages being used by active transactions by locking them.
Adaptive Server uses the following lock types:

* Exclusivetable
* Shared table

* Exclusiveintent
* Shared intent

e Exclusive page
e Shared page

e Update Page
11.0 and later

Key

No

None

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCK_CNT

SMC_NAME_LOCKS BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
ENUMS

SMC_LOCK_TYPE

SMC_NAME_LOCKS BEING_BLOCKED CNT

Description

Version compatibility

88

Reports the number of locks being blocked by the process that holds this
“hold_and_blocking” lock.

11.0 and later

CHAPTER 2 Data Items and Statistical Types

Data item type
Server level

Required keys

Optional keys

Statistic types and

datatypes

Result
No

SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_LOCK_STATUS

SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

LONG

SMC_NAME_LOCKS_GRANTED_IMMED

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the number of locks that were granted immediately, without having to
wait for another lock to be released.

11.5 and later
Result

Yes

None

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
[SMC_NAME_DB_ID + SMC_NAME_OBJ ID],
[SMC_NAME_CUR_STMT_ACT_STP DB_ID +
SMC_NAME_CUR_STMT_ACT_STP ID],
[SMC_NAME_ACT_STP DB_ID + SMC_NAME_ACT _STP D]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the

SMC_NAME_CUR_STMT_ACT_STP DB_ID +

SMC _NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

89

Data item definitions

SMC_NAME_LOCKS GRANTED WAITED

Description

Reportsthe number of locksthat were granted after waiting for another lock to
be released.

Version compatibility 11.5 and later
Data item type Result
Server level Yes
Required keys None

Optional keys

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
[SMC_NAME DB_ID + SMC_NAME_OBJ ID],
[SMC_NAME_CUR_STMT_ACT_STP DB_ID +
SMC_NAME_CUR_STMT_ACT_STP _ID],
[SMC_NAME_ACT_STP DB_ID + SMC_NAME_ACT_STP ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the

SMC_NAME_CUR_STMT_ACT_STP DB_ID +
SMC_NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use
any other keys.

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_LOCKS NOT _GRANTED

Description Reports the number of locks that were requested but not granted.
Version compatibility 11.5 and later

Data item type Result

Server level Yes

Required keys None

90

CHAPTER 2 Data Items and Statistical Types

Optional keys

Statistic types and
datatypes

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,

[SMC_NAME DB_ID + SMC_NAME_OBJ ID],
[SMC_NAME_CUR_STMT_ACT_STP_DB_ID +

SMC_NAME_CUR_STMT_ACT_STP ID],
[SMC_NAME_ACT_STP DB_ID + SMC_NAME_ACT_STP ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive. If you use the

SMC_NAME_CUR_STMT_ACT_STP DB_ID +

SMC NAME_CUR_STMT_ACT_STP_ID key combination, you cannot use

any other keys.

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_LOG_CONTENTION_PCT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the percentage of times, of the total times when a user log cache was
flushed into the transaction log, that it had to wait for the log semaphore.

A high percentage may indicate that the user log cache size should be

increased.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

DOUBLE

DOUBLE

SMC_NAME_LOGIN_NAME

Description

Reports the login name associated with Adaptive Server processes.

91

Data item definitions

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

11.0 and later

Result
No

SMC_NAME_SPID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
CHARP

SMC_NAME_MEM_CODE_SIZE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the amount of memory in bytes allocated for Adaptive Server.
11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

SMC_NAME_MEM_KERNEL_STRUCT_SIZE
Reports the amount of memory in bytes allocated for the kernel structures.
11.0 and later

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

92

Result
Yes
None

None

CHAPTER 2 Data Items and Statistical Types

Statistic types and

datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_MEM_PAGE_CACHE_SIZE

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the amount of memory in bytes allocated for the page cache.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

SMC_NAME_MEM_PROC_BUFFER

Description

Version compatibility

Data item type
Server level
Required keys
Optional keys

Statistic types and

datatypes

Reports the amount of memory in bytes allocated for procedure buffers.
11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

SMC_NAME_MEM_PROC_HEADER

Description

Reports the amount of memory in bytes allocated for procedure headers.

93

Data item definitions

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_MEM_SERVER_STRUCT_SIZE

Description Reports the amount of memory in bytes allocated for the Adaptive Server
structures.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_MOST_ACT_DEV_IO

Description Reports the number of combined reads and writes against the device with the
most activity during a given timeinterval.

Version compatibility 11.0 and later
Server level Yes

Data item type Result
Required keys None
Optional keys None

94

CHAPTER 2 Data Items and Statistical Types

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_MOST_ACT_DEV_NAME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reportsthe name of the device with the largest number of combined reads and
writes during agiven time interval.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

CHARP

CHARP

SMC_NAME_NET_BYTE_IO

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of combined network bytes sent and received.
11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

95

Data item definitions

SMC_NAME_NET_BYTES_RCVD

Description Reports the number of network bytes received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_NET_BYTES_SENT

Description Reports the number of network bytes sent.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_NET_DEFAULT PKT_SIZE

Description Reports the default size of a network packet.
Type Result

Server level Yes

Required keys None

Optional keys None

96

CHAPTER 2 Data Items and Statistical Types

Statistic types and

datatypes

SMC_NAME_NET_MAX_PKT_SIZE

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

Reports the maximum size configured for a network packet.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

SMC_NAME_NET_PKT_SIZE_RCVD

Description

Version compatibility

Data item type
Server level
Required keys
Optional keys

Statistic types and

datatypes

Reports the average size of network packets received.
11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

DOUBLE

DOUBLE

SMC_NAME_NET _PKT_SIZE_SENT

Description

Reports the average size of network packets sent.

97

Data item definitions

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

SMC_NAME_NET_PKTS_RCVD

Description Reports the number of network packets received.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_NET_PKTS_SENT

Description Reports the number of network packets sent.
Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

98

CHAPTER 2 Data Items and Statistical Types

Statistic types and
datatypes

SMC_NAME_NUM_ENGINES

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

Reports the number of engines running on Adaptive Server.

11.0 and later

Result

Yes

None

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_NUM_PROCESSES

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of processes currently running on Adaptive Server, or, if
used with the key SMC_NAME_APPLICATION_NAME, the number of
processes currently running a given application.

11.0 and later

Result
Yes

None

SMC_NAME_APPLICATION_NAME

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

99

Data item definitions

SMC_NAME_OBJ_ID

Description Reports the identification number of a database object where the object
returned is either atable or a stored procedure.

Version compatibility 11.0 and later

Data item type Key

Server level No

Required keys SMC_NAME_DB_ID

Result data items that

require this key SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS BEING_BLOCKED_CNT

SMC_NAME_OBJ NAME

SMC_NAME_OBJ TYPE

SMC_NAME_OWNER_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

Result data items for

which this key is SMC_NAME_LOCKS GRANTED_IMMED

optional SMC_NAME_LOCKS GRANTED_WAITED

SMC_NAME_LOCKS NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_HIT_PCT

SMC_NAME_PAGE_|O

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

Statistic types and

datatypes VALUE_ [VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

If you create aview usingthe SMC_NAME_OBJ |D dataitem, you might see
negative numbers as object IDs. Negative object | Ds are an accurate reporting
of IDs as assigned by Adaptive Server.

100

CHAPTER 2 Data Items and Statistical Types

Monitor Server reportson all activity, including activity on temporary tables
that Adaptive Server creates to perform a complex query. The object IDs that
Adaptive Server assigns to temporary tables can be positive or negative. The
object ID that was assigned by Adaptive Server is reported.

SMC_NAME_OBJ_NAME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the name of a database object. In views that show
SMC_NAME_OBJ NAME, the string **TempObject** is reported for
temporary tables.

11.0 and later

Result

No

SMC_NAME_DB_ID, SMC_NAME_OBJ ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

CHARP

SMC_NAME_OBJ_TYPE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Enum

Reports the type of database object, table, or stored procedure.
11.0 and later

Result

No

SMC_NAME_DB_ID, SMC_NAME_OBJ ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

ENUMS

SMC_OBJ TYPE

101

Data item definitions

SMC_NAME_OWNER_NAME

Description Reports the owner name of the database object.
Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys

SMC_NAME_DB_ID, SMC_NAME_OBJ ID

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
CHARP

SMC_NAME_PAGE_HIT_PCT

Description

Reports the percentage of times that a data page read could be satisfied from
cache without requiring a physical page read.

Version compatibility 11.0 and later
Data item type Result
Server level Yes

Required keys None

Optional keys

SMC_NAME_SPID,
[SMC_NAME_DB_ID + SMC_NAME_OBJ ID],
[SMC_NAME_ACT_STP DB_ID + SMC_NAME_ACT_STP _ID],
SMC_NAME_ENGINE_NUM

Statistic types and

datatypes VALUE_ [VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

SMC_NAME_PAGE_INDEX_LOGICAL_READ

Description Reports the number of index page reads satisfied from cache or from device
reads.
Version compatibility 11.0 and later

102

CHAPTER 2 Data Items and Statistical Types

Data item type
Server level
Required keys

Optional keys

Statistic types and
datatypes

Result
Yes

None

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP DB_ID +
SMC_NAME_ACT_STP ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_PAGE_INDEX_PHYSICAL_READ
Reportsthe number of index page readsthat could not be satisfied from the data

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

cache.

11.0 and later

Result
No

None

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP DB_ID +
SMC_NAME_ACT_STP ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

103

Data item definitions

SMC_NAME_PAGE_IO

Description Reports the number of combined logical page reads and page writes.
Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys

Statistic types and

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,

[SMC_NAME DB_ID + SMC_NAME_OBJ ID],

[SMC_NAME_ACT _STP DB_ID + SMC_NAME_ACT _STP ID],
SMC_NAME_ENGINE_NUM

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_PAGE_LOGICAL_READ

Description Reports the number of data page reads, whether satisfied from cache or from a
database device.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP DB_ID +

SMC_NAME_ACT_STP ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

104

CHAPTER 2 Data Items and Statistical Types

Statistic types and

datatypes

SMC_NAME_PAGE_NUM

Description

Version compatibility

Data item type

Server level

Result data items that
require this key

Result data items for
which this key is

optional

Statistic types and

datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

Reports the number of the data page for a given lock or lock request.
11.0 and later

Key
No

None

SMC_NAME_BLOCKING_SPID

SMC_NAME_DEMAND_LOCK

SMC_NAME_LOCKS BEING_BLOCKED_CNT

SMC_NAME_TIME_WAITED_ON_LOCK

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_PAGE_PHYSICAL_READ
Reports the number of data page readsthat could not be satisfied from the data

Description

Version compatibility

Data item type
Server level

Required keys

cache.

11.0 and later

Result
Yes

None

105

Data item definitions

Optional keys

Statistic types and
datatypes

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP DB_ID +
SMC_NAME_ACT _STP ID]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_PAGE_WRITE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of data pages written to a database device.

11.0 and later

Result
Yes

None

SMC_NAME_SPID, SMC_NAME_APPLICATION_NAME,
SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_ENGINE_NUM, [SMC_NAME_ACT_STP DB_ID +
SMC_NAME_ACT_STP D]

Note SMC_NAME_SPID and SMC_NAME_APPLICATION_NAME are
mutually exclusive.

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_PROC_STATE

Reports the state of a process. The possible states are:

Description

106

CHAPTER 2 Data Items and Statistical Types

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for
which this key is
optional

Statistic types and
datatypes

Enum

* None

e Alarm Sleep
e Background
* Bad Status

e Infected

e Lock Sleep

¢ Received Sleep

¢ RemotelO

* Runnable

¢ Running

¢ Send Sleep
e Sleeping

e Stopped

e Sync Sleep
e Terminating
¢ Yielding
11.0 and later
Key

No

SMC_NAME_PROC_STATE_CNT

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
ENUMS

SMC_PROC_STATE

107

Data item definitions

SMC_NAME_PROC_STATE_CNT

Description Reports the number of processesin a particular state.

Version compatibility 11.0 and later

Data item type Result

Server level No

Required keys SMC_NAME_PROC_STATE

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_SPID

Description Reports the process identification number. Views that contain
SMC_NAME_SPID only report on processes that are active as of the end of
the sample period. SMC_NAME_SPID is mutually exclusive with
SMC_NAME_APPLICATION_NAME in aview.

Version compatibility 11.0 and later
Data item type Key
Server level No

Result data items that

require this key SMC_NAME_BLOCKING_SPID

SMC_NAME_CONNECT_TIME

SMC_NAME_CPU_PCT

SMC_NAME_CPU_TIME

SMC_NAME_CUR_APP_NAME

SMC_NAME_CUR_ENGINE

SMC_NAME_CUR_EXECUTION_CLASS

SMC_NAME_CUR_PROC_STATE

SMC_NAME_CUR_STMT_ACT_STP_DB_NAME

SMC_NAME_CUR_STMT_ACT_STP_NAME

SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME

SMC_NAME_CUR_STMT_ACT_STP_TEXT

SMC_NAME_CUR_STMT_BATCH_TEXT

108

CHAPTER 2 Data Items and Statistical Types

Result data items for
which this key is

optional

Statistic types and

datatypes

SMC_NAME_CUR_STMT_CPU_TIME

SMC_NAME_CUR_STMT_ELAPSED_TIME

SMC_NAME_CUR_STMT_LINE_NUM

SMC_NAME_CUR_STMT_LOCKS GRANTED_IMMED

SMC_NAME_CUR_STMT_LOCKS GRANTED_WAITED

SMC_NAME_CUR_STMT_LOCKS NOT_GRANTED

SMC_NAME_CUR_STMT_PAGE_IO_CNT

SMC_NAME_CUR_STMT_PAGE_CACHE_READ_CNT

SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ_CNT

SMC_NAME_CUR_STMT_PAGE_WRITE_CNT

SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT

SMC_NAME_CUR_STMT_START_TIME

SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET

SMC_NAME_DEMAND_LOCK

SMC_NAME_HOST_NAME

SMC_NAME_KPID

SMC_NAME_LOCKS BEING_BLOCKED_CNT

SMC_NAME_LOGIN_NAME

SMC_NAME_TIME_WAITED_ON_LOCK

SMC_NAME_LOCK_CNT

SMC_NAME_LOCKS GRANTED_IMMED

SMC_NAME_LOCKS GRANTED_WAITED

SMC_NAME_LOCKS NOT_GRANTED

SMC_NAME_PAGE_INDEX_LOGICAL_READ

SMC_NAME_PAGE_INDEX_PHYSICAL_READ

SMC_NAME_PAGE_LOGICAL_READ

SMC_NAME_PAGE_PHYSICAL_READ

SMC_NAME_PAGE_WRITE

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_NUM_TIMES EXECUTED

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

LONG

109

Data item definitions

SMC_NAME_SQL_SERVER_NAME

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the name of the Adaptive Server that is being monitored as specified
inthe -s parameter to the start-up command of the Monitor Server to which the
application is connected.

11.0 and later
Result

Yes

None

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

CHARP

SMC_NAME_SQL_SERVER_VERSION

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the version of the Adaptive Server that is being monitored. For more
information, refer to the global @@version variable in the Transact-SQL
User’s Guide.

11.0 and later
Result

Yes

None

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION

CHARP

SMC_NAME_STP_CPU_TIME

Description

Version compatibility

110

Reports the CPU time, in seconds, spent executing a stored procedure.
11.0 and later

CHAPTER 2 Data Items and Statistical Types

Data item type
Server level
Required keys

Optional keys

Statistic types and
datatypes

SMC_NAME_STP_ELAPSED_TIME

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Result
No

SMC_NAME_ACT_STP DB_ID, SMC_NAME_ACT_STP_ID

SMC_NAME_SPID, SMC_NAME_STP_STMT_NUM,
SMC_NAME_STP_LINE_NUM

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE DOUBLE | DOUBLE

Reports the time, in seconds, spent executing a stored procedure.

11.0 and later

Result

No

SMC_NAME_ACT_STP DB_ID, SMC_NAME_ACT_STP_ID

SMC_NAME_STP_STMT_NUM, SMC_NAME_STP_LINE_NUM

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE DOUBLE | DOUBLE

SMC_NAME_STP_EXECUTION_CLASS
Reports the configured execution class, if any, for a given stored procedure.
11.5 and later

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Result
No

SMC_NAME_ACT_STP DB_ID, SMC_NAME_ACT_STP_ID

SMC_NAME_STP_STMT_NUM, SMC_NAME_STP_LINE_NUM

111

Data item definitions

Statistic types and

datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
CHARP

SMC_NAME_STP_HIT_PCT

Description

Reports the percentage of times that a stored procedure execution found the

procedure’s query plan in procedure cache and available for use.

Version compatibility 11.0 and later

Data item type Result

Server level Yes

Required keys None

Optional keys None

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
DOUBLE | DOUBLE

SMC_NAME_STP_LINE_NUM

Description Reports the stored procedure line number.

Version compatibility 11.0 and later

Data item type Key

Server level No

Result data items that None

require this key

Result data items for

which this key is SMC_NAME_STP_CPU_TIME

optional SMC_NAME_STP_ELAPSED_TIME
SMC_NAME_STP_NUM_TIMES EXECUTED

Statistic types and

datatypes VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

112

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_STP_LINE_TEXT

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the entire text of the stored procedure.

11.0 and later

Result

No

SMC_NAME_ACT_STP_DB_ID, SMC_NAME_ACT_STP_ID

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
CHARP

SMC_NAME_STP_LOGICAL_READ

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reportsthe number of requeststo execute astored procedure, whether satisfied
from procedure cache or with aread from sysprocedures.

11.0 and later
Result

Yes

None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_STP_NUM_TIMES_EXECUTED

Description

Version compatibility

Data item type

Server level

Reportsthe number of timesastored procedure, or alinein astored procedure,
was executed.

11.0 and later

Result

No

113

Data item definitions

Required keys

Optional keys

Statistic types and
datatypes

SMC_NAME_ACT_STP DB_ID, SMC_NAME_ACT_STP_ID

SMC_NAME_SPID, SMC_NAME_STP_STMT_NUM,
SMC_NAME_STP_LINE_NUM

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE | DOUBLE

SMC_NAME_STP_PHYSICAL_READ

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of requeststo execute a stored procedure for which aread
from sysprocedures was necessary.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_STP_STMT_NUM

Description

Version compatibility
Data item type
Server level

Result data items that
require this key

Result data items for

which this key is
optional

114

Reports the number within a stored procedure. A single stored procedure line
may contain one or more statements.

11.0 and later
Key
No

None

SMC_NAME_STP_CPU_TIME

SMC_NAME_STP_ELAPSED_TIME

SMC_NAME_STP_NUM_TIMES EXECUTED

CHAPTER 2 Data Items and Statistical Types

Statistic types and

datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

SMC_NAME_THREAD_EXCEEDED_MAX

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the number of times a query plan was runtime-adjusted because of
attempting to exceed the configured limit of threadsin the server-wide worker
thread pool in Adaptive Server.

11.5 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_THREAD EXCEEDED_MAX_PCT

Description

Version compatibility

Data item type
Server level
Required keys
Optional keys

Statistic types and

datatypes

Reports the percentage of time a query plan was adjusted at runtime because it
tried to exceed the configured limit of threadsin the server-wide worker thread
pool in Adaptive Server.

11.5 and later
Result

Yes

None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

DOUBLE

DOUBLE

115

Data item definitions

SMC_NAME_THREAD MAX_USED

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the maximum number of threads from the server-wide worker thread
pool that were concurrently in use on the server.

11.5 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

SMC_NAME_TIME_WAITED_ON_LOCK

Description

Version compatibility
Data item type
Server level

Required keys

Optional keys

Statistic types and
datatypes

SMC_NAME_TIMESTAMP

Description

Version compatibility

Data item type

116

Reportsthe amount of time (in seconds) waited for alock request to be granted.

11.0 and later

Result

No

SMC_NAME_SPID, SMC_NAME_DB_ID, SMC_NAME_OBJ ID,
SMC_NAME_LOCK_STATUS

SMC_NAME_LOCK_TYPE, SMC_NAME_PAGE_NUM

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG

Reports the date and time on Adaptive Server in itstime zone. For more
information, refer to the getdate() function in the Transact-SQL User’s Guide.

11.0 and later

Result

CHAPTER 2 Data Items and Statistical Types

Server level
Required keys

Optional keys

Statistic types and

datatypes

Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

CHARP

SMC_NAME_TIMESTAMP_DATIM

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the date and time on Adaptive Server in itstime zone, returned in a
CS _DATETIME struct. For moreinformation, refer to the getdate() functionin
the Transact-SQL User’s Guide.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

DATIM

SMC_NAME_XACT

Description

Version compatibility

Data item type
Server level
Required keys
Optional keys

Reports the number of committed Transact-SQL statement blocks
(transactions).

11.0 and later

Result
Yes
None

None

117

Data item definitions

Statistic types and
datatypes

SMC_NAME_XACT_DELETE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

Reports the number of rows deleted from database tables.

11.0 and later

Result

Yes

None

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE | SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_XACT_DELETE_DEFERRED

Reports the number of rows deleted from a database table that were donein
deferred mode.

11.0 and later

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

118

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_XACT_DELETE_DIRECT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the number of rows deleted from a database table that were donein

direct mode.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_XACT_INSERT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

SMC_NAME_XACT_INSERT_CLUSTERED

Description
Version compatibility
Data item type

Server level

Reports the number of insertions into a database table.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

Reports the number of insertionsto database tables that have a clustered index.

11.0 and later

Result

Yes

119

Data item definitions

Required keys
Optional keys

Statistic types and
datatypes

None

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

SMC_NAME_XACT_INSERT_HEAP

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reportsthe number of insertionsto database tablesthat do not have aclustered

index.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_XACT_SELECT

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

120

Reports the number of SELECT or OPEN CURSOR statements.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_XACT_UPDATE

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the updates to database tables.
11.0 and later

Result

Yes

None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_ AVG AVG

SESSION

SAMPLE

SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_XACT_UPDATE_DEFERRED

Description

Version compatibility

Data item type
Server level
Required keys

Optional keys

Statistic types and

datatypes

Reports the updates to a database table that are performed in deferred mode
rather than in direct mode.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_XACT_UPDATE_DIRECT

Description

Version compatibility

Data item type

Server level

Reports the sum of expensive, in-place, and not-in-place updates (everything
except updates deferred). Also called updates in place.

11.0 and later

Result

Yes

121

Data item definitions

Required keys
Optional keys

Statistic types and
datatypes

SMC_NAME_XACT_UPDATE_EXPENSIVE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

None

None

VALUE_ | VALUE_ | RATE_ RATE_ AVG_ AVG_
SAMPLE | SESSION | SAMPLE SESSION | SAMPLE | SESSION
LONG LONG DOUBLE DOUBLE

Reports the updates to a database table that are done in expensive mode. In
expensive mode, arow is deleted from its original location, and inserted at a

new location.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

SMC_NAME_XACT_UPDATE_IN_PLACE
Reports the updates that do not require a delete and insert.
11.0 and later

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

122

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

CHAPTER 2 Data Items and Statistical Types

SMC_NAME_XACT_UPDATE_NOT_IN_PLACE

Description

Version compatibility
Data item type
Server level
Required keys
Optional keys

Statistic types and
datatypes

Reports the updates that require a delete and insert.

11.0 and later

Result
Yes
None

None

VALUE_
SAMPLE

VALUE_
SESSION

RATE_
SAMPLE

RATE_
SESSION

AVG_
SAMPLE

AVG_
SESSION

LONG

LONG

DOUBLE

DOUBLE

123

Data item definitions

124

CHAPTER 3

Monitor Client Library Functions

In addition to giving you detailed information about Monitor Client
Library functions, this chapter contains the following topics:

Topic Page
Threads 126
Error handling 127

You use Monitor Client Library functionsto write applicationsthat collect
Adaptive Server performance data. This chapter describes, in alphabetical
order, each Monitor Client Library function. Table 3-1 lists the functions

and a brief description of each.

Table 3-1: Monitor Client Library functions

Function

Description

smc_close

Closes a connection

smc_connect_alloc

Creates a connection structure

smc_connect_drop

Deallocates a connection structure

smc_connect_ex

Establishes a connection

smc_connect_props

Sets, retrieves, or clears properties on a
connection

smc_create_alarm_ex

Adds an dlarm to adataitem

smc_create_filter

Adds afilter to adataitem

smc_create_playback_session

Initializes a playback session on a
Historical Server connection

smc_create_recording_session

Initializes arecording session on a
Historical Server connection

smc_create_view

Definesaview

smc_drop_alarm

Removes an alarm from adataitemin a
view

smc_drop_filter

Removes afilter from adataitemin aview

smc_drop_view

Drop aviews

smc_get_command_info

Retrieves detailed information about an
aarm or error

smc_get_dataitem_type

Retrieves the type of a dataitem

125

Threads

Threads

126

Function

Description

smc_get_dataitem_value

Retrievesthe datafor aparticular dataitem
and row

smc_get_row_count

Retrieves the number of rows of datain a
view

smc_get_version_string

Retrieves the Monitor Client Library
version number

smc_initiate_playback

Concludes the definition of viewsfor a
playback session

smc_initiate_recording

Concludes the definition of viewsfor a
recording session

smc_refresh_ex

Retrieves datafor al viewsinagiven
connection

smc_terminate_playback

Ends a playback session on a Historical
Server connection

smc_terminate_recording

Cancelsarecording session on aHistorical
Server connection

Most functions work with Monitor Server and Historical Server. In this
chapter, unless otherwise noted, the term connection means a connection to
Monitor Server or Historical Server. See Appendix C, “Backward
Compatibility” for information about obsol ete functions.

Two threads cannot use Monitor Client Library functions at the sametime. Use
aglobal lock (semaphore) on Monitor Client Library callsto avoid any thread

overwrites or unpredictable actions.

Monitor Client Library functions are not protected from reentrant invocation.
Use the following special programming considerations when using these
functionsin a multithreaded environment. Be sure that:

e A cdl to create aclient connection (smc_connect) is serialized with all
other Monitor Client Library function calls across all threads.

e A cadltodisconnect aclient connection (smc_disconnect) isserialized with
all other Monitor Client Library function calls across all threads.

CHAPTER 3 Monitor Client Library Functions

¢ Any single client connection livesin one, and only one, thread. All
Monitor Client Library function call sto accessthisclient connection occur
in this thread.

e A cdl torefresh aclient connection is serialized with al other Monitor
Client Library function calls on this connection in this thread.

Error handling

Error handler

Description

A Monitor Client Library application installs an error handler when it creates
aconnection (smc_connect_alloc, described on 131). This error handler is
called whenever an error occurs for that connection.

Most Monitor Client Library functions return one of the following values:

Table 3-2: Return values

Return value Description

SMC_RET_SUCCESS The function completed successfully.

SMC_RET_FAILURE The function failed. More detailed
information is available from the error
handler.

SMC_RET _INVALID_CONNECT Thefunction did not execute because it was
requested against an erroneous connection.
Theerror handler isnot invoked because error
handlers are available only for valid
connections.

Other return values are listed with the functions that return them.

Note Theerror callback functionisnot triggered under certain error conditions
regarding data item specification in smc_create_view and smc_create_alarm.
To capture these error conditions, check the return code for these functions.

An error handler is a user-defined function.

127

Callback function

Syntax

Parameters

Usage

SMC_VOID ErrorCallback (
SMC_CONNECT_ID clientld,
SMC_COMMAND _ID commandld,
SMC_VOIDP userDataHandle)

clientld
identifies a Monitor connection.

commandld
identifies an instance of a command.

userDataHandle
user-supplied pointer.

e Anerror handler can be changed at any time via either
smc_change_error_handler or smc_connect_props functions. (See
Callback function on page 128 for more information)

Note C++ member functions cannot be used as callback functions.

Callback function

Description

Syntax

Parameters

128

Callback functions are user-defined functions that notify an application when
an event has occurred. These functions are registered with Monitor Client
Library API calsfor:

e Alams
e Error information
When either of the above events occur, a callback function is executed.

SMC_VOID CallbackFunction

(SMC_CONNECT_ID clientld,
SMC_COMMAND_ID commandld,
SMC_VOIDP userDataHandle)

clientld
identifies the connection.

commandid
identifies the instance of a command.

CHAPTER 3 Monitor Client Library Functions

Usage

userDataHandle

user data pointer for a given connection. An application can set this pointer

by using smc_connect_props.

Accessing callback data When an event triggers a callback function, you
can request information about the event. Datais accessed by calling
smc_get_command_info from within the callback function. Thisfunction takes
aconnection 1D, acommand ID, and an enumerator constant that identifies
which piece of datathe user isinterested in. The data available depends on the
type of callback. Table 3-3 describes the data available for alarm callbacks.
Table 3-4 describes the data available for error callbacks.

Table 3-3: Data available for alarm callbacks

Information type

Description

SMC_INFO_ALARM_ACTION_DATA String supplied for

alarmActionData upon creation
of the alarm.

SMC_INFO_ALARM_ALARMID

|dentifiesthe alarm.

SMC_INFO_ALARM_CURRENT VALUE Current value that met or

exceeded the alarm threshold.

SMC_INFO_ALARM_DATAITEM

Dataitem on which the alarm
was set. Pointsto a
SMC_DATAITEM_STRUCT.

SMC_INFO_ALARM_ROW

Row containing the dataitem
value that triggered the dlarm.

SMC_INFO_ALARM_THRESHOLD VALUE Threshold value defined for this

darm.

SMC_INFO_ALARM_TIMESTAMP

Time (in the Adaptive Server
timezone) marking theend of the
sampleinterval inwhose datathe
alarm condition was met.

SMC_INFO_ALARM_VIEWID

Identifies aview created on the
connection.

Table 3-4: Data available for error callbacks

Information type

Description

SMC_INFO_ERR_MAPSEVERITY

Monitor Client Library severity level.

SMC_INFO_ERR_MSG

Text of the error message. (See Appendix
D, “Troubleshooting I nformation and Error

Messages’.)

SMC_INFO_ERR_NUM

Number of the error.

SMC_INFO_ERR_SEVERITY

Severity of the error message.

129

smc_close

Information type Description
SMC_INFO_ERR_SOURCE Source of the error message. One of the
following:

* SMC_SRC_UNKNOWN — not known
e SMC_SRC HS-Historical Server

e SMC_SRC SMC —Monitor Client
Library

e SMC_SRC_CT —Client Library
e SMC_SRC_SS-— Adaptive Server
e SMC_SRC SMS-Monitor Server

SMC_INFO_ERR_STATE State of the error. Useful for technical
support in diagnosing internal errors.

smc_close

Description Closes a connection that was created with smc_connect_ex. This function
terminates the connection but does not deallocate it. Use smc_connect_drop to
deallocate a connection structure.

Syntax SMC_RETURN_CODE smc_close
(SMC_CONNECT_ID clientld,

SMC_CLOSE_TYPE closeType)
Parameters clientld

identifies the connection.

closeType
type of close: SMC_CLOSE_REQUEST

Return value

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET_INVALID_CONNECT Connection does not exist.

Examples This example assumes that you have created a connection and have aclientld.

if (snc_close(clientld, SMC_CLOSE_REQUEST)
I = SMC_RET_SUCCESS)
{
printf("snc_close failed\n");
/* do sone cleanup */

130

CHAPTER 3 Monitor Client Library Functions

}

Usage e All views (aswell asalarms and filters associated with the dataitems in
the view) on the specified connection are also dropped.

e smc_close only disconnects a connection. Call smc_connect_drop to

deallocate a connection structure.

e If smc_close returnsafailure, theuser isadvised to call smc_connect_drop.

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE Yes
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates
SMC_RET_INTERNAL_ERROR Internal error

SMC_RET_INVALID_API_FUNCTION

Invalid use of obsol ete and replacement
functions in the same connection

SMC_RET_INVALID_API_FUNC_
SEQUENCE

Invalid calling sequence of Monitor
Client Library functions

See also smc_connect_drop, smc_connect_ex

smc_connect_alloc

Description Creates a connection structure with error callback, but does not establish a
connection.
Syntax SMC_RETURN_CODE smc_connect_alloc

(SMC_GEN_CALLBACK ErrCallback,

SMC_CONNECT_IDP clientldHandle)

Parameters ErrCallback
Pointer to error callback function.

clientldHandle

Pointer to a variable, which should be declared as type
SMC_CONNECT _ID. If the call to smc_connect succeeds, this variable
contains the ID for the Monitor connection.

131

smc_connect_drop

Return value

Examples

Usage

See also

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.

The following example assumes you have defined an error callback function,
myErrorHandler.

SMC_ CONNECT_ID clientld;
if (snc_connect _all oc(nyErrorHandl er, &l ientld)
I = SMC_RET_SUCCESS)
{

printf("snc_connect_alloc failed\n");
exit(1);
}

e Theerror handler parameter cannot be null.
e Usesmc_connect_props to set properties on a connection.

e Usesmc_connect_ex to establish the connection identified by
clientldHandle.

* Usesmc_connect_drop to deallocate a connection structure created with
smc_connect_alloc.

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE Yes
SMC _SERVER M _HISTORICAL Yes

Errors
Error Indicates
SMC_RET_INSUFFICIENT_MEMORY Insufficient memory
SMC RET _INTERNAL_ERROR Internal error

smc_connect_drop, smc_connect_ex, smc_connect_props

smc_connect_drop

Description

Syntax

132

Deallocates a connection structure that was created with smc_connect_alloc.

SMC_RETURN_CODE smc_connect_drop
(SMC_CONNECT_ID clientld)

CHAPTER 3 Monitor Client Library Functions

Parameters clientld
identifies the connection.

Return value

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET _INVALID_CONNECT Connection does not exist.
Examples This example assumes that:

¢ You have created a connection using smc_connect_alloc and have a

clientld.

¢ You have successfully executed smc_close on the connection.

if (snc_connect _drop(clientld) !'= SMC RET_SUCCESS) {
printf("snc_connect_drop failed\n");

/* do sone cleanup */

}
Usage e smc_close must be called before smc_connect_drop, if aconnection was
successfully made.

Valid server modes
Mode Availability
SMC_SERVER M_LIVE Yes
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates
SMC_RET_CONNECT_NOT_CLOSED Connection has not been

closed

SMC_RET_INVALID_API_FUNCTION

Invalid use of obsolete and
replacement functions on the
same connection

SMC_RET_INVALID_API_FUNC_SEQUENCE

Invalid calling sequence of
Monitor Client Library
functions

See also smc_close, smc_connect_alloc

133

smc_connect_ex

smc_connect_ex

Description Establishes a connection for the connection structure created with
smc_connect_alloc. Properties on the connection, such as Server Name and
Server Mode, must have been set with smc_connect_props.

Syntax SMC_RETURN_CODE smc_connect_ex
(SMC_CONNECT_ID clientld)
Parameters clientld

identifies the connection.

Return value

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET_INVALID_CONNECT Connection does not exist.

Examples This example assumes you have created a connection using smc_connect_alloc

and have aclientld.
if (snc_connect_ex(clientld) != SMC_RET_SUCCESS)

{
printf("snc_connect_ex failed\n");
exit(1);
}
Usage e smc_connect_alloc and smc_connect_props must be called before

smc_connect_ex.

e Each Monitor Client Library connection usestwo network connections. If
you are running a Monitor Client Library application on a PC and reach
thelimit on network connections, reconfigure your networking softwareto
raise the limit.

Valid server modes

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes

Errors

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INTERNAL_ERROR Internal error

134

CHAPTER 3 Monitor Client Library Functions

See also

Error Indicates

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and
replacement functions on the
same connection

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of
Monitor Client Library

functions
SMC_RET _INVALID_PROPERTY Property has not been set
SMC_RET_UNABLE_TO_CONNECT_TO_SMS Cannot connect to Monitor
Server
SMC_RET_UNABLE_TO_CONNECT_TO_SS Cannot connect to Adaptive
Server

smc_close, smc_connect_alloc

smc_connect_props

Description

Syntax

Parameters

Sets, retrieves, or clears properties on a connection.

SMC_RETURN_CODE smc_connect_props

(SMC_CONNECT_ID clientld,
SMC_PROP_ACTION propertyAction,
SMC_PROP_TYPE property,
SMC_VALUE_UNIONP propertyValue,
SMC_SIZET bufferLength,
SMC_SIZETP outputLengthHandle)

clientld
identifies the connection.

propertyAction
Property action type. Valid types are:

e SMC_PROP_ACT_CLEAR —reset the value of the specified property
to its default.

e SMC_PROP_ACT_GET —retrieve the value of the specified property.

e SMC_PROP_ACT_SET - set the value of the specified property.
property

the symbolic name of the property whose value is being set, retrieved, or
cleared. See Table 3-5 on page 138 for alist of thisargument’slegal values.

135

smc_connect_props

propertyValue
if propertyActionis:

SMC_PROP_ACT_CLEAR —propertyValueisignored.

SMC_PROP_ACT_GET - pointer to the union in which
smc_connect_props Will place the requested information.

SMC_PROP_ACT_SET — pointer to the union that contains the value
to which property isto be set.

bufferLength
the length of datain bytes of
*(propertyValue->string\Value). Used only if propertyValue isapointer to a
string. If propertyActionis:

SMC_PROP_ACT_CLEAR - bufferLength isignored, and must be
passed SMC_UNUSED.

SMC_PROP_ACT_GET —huffer Length isignored, and must be passed
SMC_UNUSED.

SMC_PROP_ACT_SET - bufferLength must contain the number of
bytes of * (propertyValue-> stringValue) or SMC_NULLTERM to
indicate the string's length by aterminating null byte.

outputLengthHandle
apointer to aninteger variable. Used only if propertyValueis apointer to a
string. If propertyActionis:

Return value

SMC_PROP_ACT_CLEAR —outputLengthHandle isignored, and
must be passed null.

SMC_PROP_ACT_GET —the length in bytes of the requested
information. Contains the number of bytes that were actually written to
propertyValue->stringValue (not including the null-terminating byte).

Pass null if thisinformation is not desired.

SMC_PROP_ACT_SET —outputLengthHandleisignored, and must be
passed null.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET _INVALID_CONNECT Connection does not exist.

136

CHAPTER 3 Monitor Client Library Functions

Examples

Usage

This example assumes that you have previously allocated a connection using
smc_connect_alloc and have aclientld.

SMC VALUE UNI ON val ue. si zet Val ue = 512;
i f (snt_connect _props(clientld,
SMC_PROP_ACT_SET,
SMC_PROP_PACKETSI ZE,

&val ue,
0,
NULL) !'= SMC_RET_SUCCESS)
{
printf("snt_connect_props failed\n");
/* do sone cleanup */
}

A property resets to its default value when cleared.
smc_connect_props must be called after smc_connect_alloc.

The following properties must be set on a connection before calling
smc_connect_ex:

« SMC_PROP_PASSWORD
« SMC_PROP_SERVERNAME
+ SMC_PROP USERNAME

The server Mode determines which other Monitor Client Library functions
are applicable for the connection. For example,
smc_create_recording_session isnot applicable for alive connection.

The server Mode (specified upon creation of aconnection) determinesthe
behavior of the common functions. For example, smc_create_view can be
used to create alive view or a historical view.

For live connections and historical connections for defining recording
sessions, the property SMC_PROP_USERNAME must be set to either
“sa’, the name of an Adaptive Server account having sa role, or the name
of an Adaptive Server account with execute permission on the stored
procedure master.dbo.mon_rpc_connect.

To retrieve only the length of a string, pass null for propertyValue and a
valid pointer for outputLengthHandle.

For the definition of aSMC_VALUE_UNION structure, see “Union:
SMC_VALUE_UNION" on page 240.

137

smc_connect_props

138

For data of type SMC_CHARP, stringValue points to the value. The
Monitor Client Library allocatesthe memory for thisstring and the calling
application must deallocate it using free().

The following properties are only valid before a connection is made:

« SMC_PROP_APPNAME
« SMC_PROP_IFILE

« SMC_PROP_PASSWORD

« SMC_PROP_SERVERMODE
« SMC_PROP_SERVERNAME
« SMC_PROP_USERNAME.

If these properties are changed on a connection after it has been
established, they take effect during the next call to smc_connect_ex.

Table 3-5 summarizesthe Monitor Client Library properties, whether they
can be set, retrieved, or cleared, and the datatype of each property value:

Table 3-5: Monitor Client Library connection properties

Set/
Get/

Property Clear *propertyValueis Default

SMC_PROP_APPNAME All SMC_CHARP An empty
string

SMC_PROP_ERROR _ Set/ A function pointer

CALLBACK Get (use voidpValue

member of
SMC_VALUE_UNI
ON)

SMC_PROP_IFILE All SMC_CHARP Empty string,
signifying the
interfacesfile
in directory
where the
SYBASE
environment
variable
points (on
Windows,
sgl.ini inthe

ini
subdirectory)

CHAPTER 3 Monitor Client Library Functions

Set/
Get/
Property Clear “*propertyValueis Default
SMC_PROP_LOGIN_TIMEOUT All SMC_SIZET 0 (Usethe
server
default)
SMC_PROP_PACKETSIZE All SMC_SIZET 0 (Usethe
server
default)
SMC_PROP_PASSWORD Set/ SMC_CHARP An empty
Clear string
SMC_PROP_SERVERMODE All SMC_INT SMC_SERV
ER_M_LIVE
SMC_PROP_SERVERNAME All SMC_CHARP An empty
string
SMC_PROP_TIMEOUT All SMC_SIZET 0 (Usethe
server
default)
SMC_PROP_USERDATA All SMC_VOIDP NULL
SMC_PROP_USERNAME All SMC_CHARP An empty
string
Properties
Property Description

SMC_PROP_APPNAME

The name of the application using Monitor
Client Library. This property can be modified
at any time, but takes effect only when
smc_connect_ex is called.

SMC_PROP_ERROR _
CALLBACK

Theerror callback function. This property can
be modified at any time during the connection.

SMC_PROP._IFILE

Theinterfacesfile. This property can be
modified at any time, but takes effect only
when smc_connect_ex is called.

SMC_PROP_LOGIN_TIMEOUT

The timeout vaue (in seconds) used during
login time. This property can be modified at
any time, but takes effect when only
smc_connect_ex is called.

SMC_PROP_PACKETSIZE

The packet size to use for communicating to
the servers. This property can be modified at
any time during the connection.

SMC_PROP_PASSWORD

The password. This property can be modified
at any time, but takes effect only when
smc_connect_ex is called.

139

smc_create_alarm_ex

Property

Description

SMC_PROP_SERVERMODE

The server mode. Thisproperty canbesetonly
before a connection is established. It can be
modified at any time, but takes effect when
only smc_connect_ex iscalled. Thevaueis
an enum: SMC_SERVER_MODE. See
“Enum: SMC_SERVER_MODE” on page
230.

SMC_PROP_SERVERNAME

The server name. This property can be
modified at any time, but takes effect only
when smc_connect_ex is called.

SMC_PROP_TIMEOUT

The timeout value to use for requests sent to
the servers. This property can be modified at
any time during the connection.

SMC_PROP_USERDATA

A user-supplied pointer. Thispointer is passed
back to callback functions. It can be changed
at any time on an available connection.

SMC_PROP_USERNAME

The username to use for this connection. This
property can be modified at any time, but takes
effect only when smc_connect_ex is called.

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE Yes
SMC _SERVER M _HISTORICAL Yes
Errors
Error Indicates

SMC_RET_INVALID_API_FUNCTION Invaiduseof obsoleteand replacement

functions in program.

SMC_RET _INVALID PARAMETER Invalid parameter value.

See also smc_connect_alloc, smc_connect_ex

smc_create_alarm_ex

Description Creates an alarm on one data item within aview on a connection.
Syntax SMC_RETURN_CODE smc_create_alarm_ex
(SMC_CONNECT_ID clientld,
SMC_VIEW_ID viewld,

140

CHAPTER 3 Monitor Client Library Functions

Parameters

SMC_DATAITEM_STRUCTP dataltemHandle,
SMC_VALUE_UNIONP alarmValueDataHandle,
SMC_DATAITEM_TYPE alarmDatatype,
SMC_ALARM_ACTION_TYPE alarmActionType,

SMC_CHARP alarmActionData,
SMC_VOIDP userDataHandle,
SMC_GEN_CALLBACK alarmCallback,
SMC_ALARM_IDP alarmldHandle)

clientld
identifies the connection.

viewld
identifies aview created on the connection.

dataltemHandle
pointer to data item and statistic type.

alarmValueDataHandle
pointer to threshold at or above which the alarm istriggered.

alarmDatatype
the datatype of the alarm value must be one of thefollowing and must match
the expected datatype for the given dataitem:

« SMC_DI_TYPE_DOUBLE
« SMC_DI_TYPE_INT
« SMC_DI_TYPE_LONG

alarmActionType
e SMC_ALARM_A_NOTIFY
(SMC_SERVER_M_LIVE mode only) — invokes the alarm callback.

* SMC_ALARM_A_EXEC PROC (SMC_SERVER_
M_HISTORICAL mode only) —invokes the specified externa
program.

e SMC ALARM_A_LOG_TO_FILE (SMC_SERVER_
M_HISTORICAL mode only) —writes a message to the log file.

alarmActionData
pointer to null-terminated string whose contents depend on
alarmActionType. If alarmActionType equals:

e SMC_ALARM_A_NOTIFY —alarmActionData isignored.

¢ SMC ALARM_A_EXEC_PROC — null-terminated string that
contains the filename and optional parameter list of the program to
invoke.

141

smc_create_alarm_ex

e SMC ALARM_A LOG_TO_FILE —null-terminated string that
contains the log file name.

These file names are on the system where Historical Server is running
(which need not be where the application isrunning). The Historical Server
must have access to the files.

userDataHandle
user-supplied pointer.

alarmCallback
identifies the notification function employed by alarmActionType,
SMC_ALARM_A_NOTIFY.

alarmidHandle
pointer to avariable, which should be declared astype SMC_ALARM _ID.
If thecall tosmc_create_alarm succeeds, thisvariable containsthe | D for the

alarm.
Return value
Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET _INVALID_CONNECT Connection does not exist.
Examples This example assumes that:

* You have created a connection using smc_connect_ex and have a clientld.
* You have created aview on the connection and have a viewld.

* Theview contains the dataltem
SMC_NAME_PAGE_LOGICAL_READ,
SMC_STAT VALUE_SAMPLE.

e You have defined an alarm handler function, myAlarmHandler.

SMC_DATAI TEM STRUCT dataltem =
{ SMC_NAME_PAGE LOd CAL_READ,
SMC_STAT_VALUE_SAMPLE 1};

SMC_DATAI TEM STRUCTP dat al t enHandl e = &dataltem
SMC_VALUE_UNI ON al ar mval ue;
SMC _VALUE _UNI ONP al ar nval ueHandl e = &al ar nval ue;
SMC ALARM I D al arm d;
SMC_ALARM | DP al arm dHandl e = &al arm d;
al arnval ue. | ongVal ue = 10L;

if (snc_create_alarmex(clientld,

142

CHAPTER 3 Monitor Client Library Functions

Usage

vi ew d,

dat al t enHandl e,

al ar nval ueHandl e,

SMC DI _TYPE _LONG

SMC_ALARM A NOTI FY,

NULL, /* ignored */

NULL, /* no user data */

nyAl ar mHandl er,

al arml dHandl e) !'= SMC_RET_SUCCESS)
{

printf("snc_create_alarmex failed\n");
/* do sone cleanup */

}
Alarms can be created on result data items, but not on key dataitems.

alarmlds are unique only within a given view.

Alarms are triggered for each row of aview where the dataitem value
meets or exceeds the threshold.

Alarms are applied after filters, in the context of arefresh call.

Alarmsaretriggered at each refresh based upon a dataitem’s value (state)
rather than the change of a dataitem’s value (transition).

Multiple alarms can be created on the same data item.

When used in a Historical Server connection during the definition of a
recording session, smc_create_alarm_ex defines an alarm that will be
created during the execution of arecording session.

Alarms cannot be defined in a Historical Server connection during a
playback session.

When creating alog-to-file alarm, if you specify aUNIX directory for the
location of the log file, be sure that the directory is valid and mounted on
the machinewhere Historical Server isrunning. Also be surethat you have
write permissions to the directory. If the directory you specify isinvalid,
unmounted, or not writable, Historical Server doesnot createalogfile, nor
does it issue a message advising you that the location isinvalid.

The syntax of the alarm callback is:

SMC_VOID AlarmCallback

(SMC_CONNECT_ID clientld,
SMC_COMMAND _ID commandid,
SMC_VOIDP userDataHandle)

143

smc_create_filter

Valid server modes

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (for recording)
Errors

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

SMC_RET_INVALID_ALARM_VALUE Invalid aarm value

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and
replacement functionswithinthesame

program
SMC_RET_INVALID_DATAITEM_FOR_ Dataitem statistic type or darm value
ALARM mismatched
SMC _RET_INVALID_DATATYPE Invalid datatype
SMC _RET_INVALID_DINAME Dataitem does not exist
SMC_RET_INVALID_DISTAT Dataitem statistic type does not exist
SMC_RET_INVALID_PARAMETER Invalid parameter value
SMC _RET_INVALID_VIEWID View does not exist
SMC _RET _INTERNAL_ERROR Internal error
Callback parameters
Parameter Description
clientld Identifies the connection.
commandid Identifies the instance of a command.
userDataHandle Pointer that was set by the call to smc_create_alarm for this
aarm.

The adarm callback function uses smc_get_command_info to obtain
information about the circumstances that triggered the alarm.

See also smc_connect_ex, smc_drop_alarm, smc_get_command_info

smc_create_filter

Description Createsafilter on adataitem in aview. Each dataitemin aview can have only
onefilter.

144

CHAPTER 3 Monitor Client Library Functions

Syntax

Parameters

This function can be used with both Monitor Server and Historical Server.
When used with Historical Server (that is, when the connection modeis
SMC_SERVER M_HISTORICAL), it createsafilter for therecording session
that is being defined.
SMC_RETURN_CODE smc_create_filter

(SMC_CONNECT_ID clientld,
SMC_VIEW_ID viewld,

SMC_DATAITEM_STRUCTP dataltemHandle,

SMC_FILTER_TYPE filterType,

SMC_VALUE_UNIONP filterValueListHandle,

SMC_SIZET filterValueListLength,

SMC_DATAITEM_TYPE filterDatatype,

SMC_FILTER_IDP filterldHandle)
clientld

identifies the connection.

viewld
identifies a view created on the connection.

dataltemHandle
dataitem and statistic type. The dataitem must be numeric if thefilter type
isany of the following:

« SMCFILT T GE

« SMCFILT T LE

« SMC_FILT_T_GE_AND_LE
« SMC_FILT_TOP N

filter Type
type of filter to apply. Valid filter types are:

e SMC FILT T _EQ-equal to.

e SMC FILT_T_NEQ —not equal to.

e SMC FILT_T_GE — greater than or equal to.
e SMC FILT_T_LE-lessthan or equal to.

e SMC FILT_T_GE AND_LE —alower bound followed by an upper
bound.

« SMC_FILT_T_TOP N -—topN.

filterValueListHandle
pointer to an array of filter values. The number of filter values depends on
the filter type:

145

smc_create_filter

Return value

146

SMC_FILT_T_EQ — one or more.
SMC_FILT_T_NEQ —one or more.
SMC _FILT_T_GE-one.
SMC_FILT_T_LE —one.

SMC FILT_T_GE_AND_LE —two; low bound must befirst element
in list and high bound second.

SMC_FILT_T_TOP_N —one.

filterValueListLength
number of filter values listed in filterValueListHandle.

filter DataType
datatype of the values for the filter; one of the following:

SMC_DI_TYPE_CHARP
SMC_DI_TYPE_DATIM
SMC_DI_TYPE_DOUBLE
SMC_DI_TYPE_ENUMS
SMC_DI_TYPE_INT
SMC_DI_TYPE_LONG

Must match the datatype for the dataitem. The filter values must also be of
thistype, except:

If thefilter typeisSMC_FILT_T_TOP_N, thefilter value in the
filterValueListHandle must be type SMC_INT.

If the datatypeis SMC_DI_TYPE_ENUMS, thefilter valuein the
filterValueListHandle must be passed using the intValue member.

filterldHandle
pointer to a variable, which should be declared astype SMC_FILTER_ID.
If the call to smc_create_filter succeeds, this variable containsthe ID for the

filter.
Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET_INVALID_CONNECT Connection does not exist.

CHAPTER 3 Monitor Client Library Functions

Examples

Usage

The following example assumes that:

You have created a connection and have aclientld.
You have created a view on that connection and have a viewld.
The view contains the dataltem defined in the example.

SMC_DATAI TEM STRUCT dataltem =
{ SMC_NAME_PAGE_LOd CAL_READ,
SMC_STAT_VALUE_SAMPLE };

SMC_DATAI TEM STRUCTP dat al t enHandl e = &dataltem
SMC VALUE UNION filterVal ue;
SMC VALUE UNIONP filterVal ueHandl e = &filterVal ue;
SMC FILTER ID filterld;
SMC FILTER IDP filterldHandle = &filterld;
filterValue.longVal ue = 10L;

if (snc_create_filter(clientld,
vi ewl d,
dat al t enHandl e,
SMC_FI LT_T_GE,
filterVal ueHandl e,
1, /* just one filterValue */
SMC DI _TYPE_LONG,
filterldHandl e) !'= SMC_RET_SUCCESS)
{

printf("snc_create filter failed\n");
/* do sone cleanup */

}

The application can employ wildcard (%) characterson all filters that
apply to string datatypes.

Filters are applied before alarms, in the context of arefresh call.
Only one filter can be created on a data item.

A filter defined for arecording session isnot created until execution of the
recording session.

Not allowed during playback.

For database objects, you can define SMC_FILT_T_EQ filterson the
name of the object, that is, on adataitem of SMC_NAME_OBJ NAME
or SMC_NAME_ACT_STP_NAME. The string value must include the
fully qualified object name, for example, database.owner.object.
However, you can use wildcards for each component of the name.

147

smc_create_playback_session

Valid server modes

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (for recording only)
Errors

Error Indicates

SMC_RET_INSUFFICIENT_MEMORY

Insufficient memory

SMC_RET_INVALID_COMPOSITE_FILTER

Invalid composite filter

SMC_RET_MISSING_DATAITEM

Missing dataitem

SMC_RET_INVALID_DATATYPE

Invalid datatype

SMC_RET_INVALID_DINAME

Invalid dataitem

SMC_RET_INVALID_DISTAT

Invalid dataitem statistic type

SMC_RET_INVALID_FILTER_VALUE

Invalid value for filter

SMC_RET_INVALID_FILTER_RANGE

Invalid range values

SMC_RET_INVALID_VALUE_COUNT

Invalid value for
filterValueListLength

SMC_RET_INVALID_VIEWID

View does not exist

See also smc_drop_filter

smc_create playback session

Description Initializes a playback session on Historical Server.
Syntax SMC_RETURN_CODE smc_create_playback_session
(SMC_CONNECT_ID clientld,
SMC_SESSION_IDP sessionldArray,
SMC_SIZET numlinputSessions,
SMC_CHARP startTime,
SMC_CHARP endTime,

SMC_HS_PLAYBACK_OPT playbackType,
SMC_SIZET summarizationinterval,
SMC_HS ESTIM_OPT estimationOption,
SMC_HS_MISSDATA_OPT missingDataOption,
SMC_HS_TARGET_OPT playbackTarget,

SMC_CHARP directoryName

SMC_HS_SESS_PROT_LEVEL protectionLevel,

SMC_HS_SESS_SCRIPT_OPT scriptOption,

SMC_HS_SESS_DELETE_OPT deleteOption,
SMC_SESSION_IDP sessionldHandle)

148

CHAPTER 3 Monitor Client Library Functions

Parameters clientld
identifies the connection.

sessionldArray
array of session numbers identifying the existing recording session(s) on
Historical Server that furnishes data for this playback session. If more than
oneinput sessionis specified, then they all must have been defined to record
data from the same Adaptive Server, and they must be ordered
chronologically.

If playbackTargetisSMC_HS TARGET _FILE, then there must not be any
gaps between the times covered by multiple input sessions. The input
sessions must contain data for al times between the startTime and endTime
parameters.

numl nputSessions
the number of input sessions, that is, the length of the sessionldArray. Must
be at least one.

startTime
null-terminated string containing the time to start playback, using the
format:

yyyy/ mm dd hh:mi:ss] [tinme zone]
The default isto start at the beginning of the first input session.

endTime
null-terminated string containing the time at which to stop playback, using
the format:

yy/ mmidd hh:mi:ss] [tine zone]
The default isto stop at the end of the last input session.

playbackType
specifiesthe level of detail of the playback. Valid values are:

e SMC_HS PBTYPE_RAW —playsback dataasit was collected, using
whatever (possibly varying) intervalsare contained in theinput session.
This option can include snapshot data such as current SQL statement
data and status on locks or processes. Valid only with playbackTarget
SMC_HS TARGET CLIENT.

¢ SMC_HS PBTYPE _ACTUAL —playsback dataat whatever (possibly
varying) intervals are contained in the input session(s). This option
cannot include snapshot data.

149

smc_create_playback_session

150

e SMC_HS PBTYPE_INTERVAL - playsback data summarized into
sample intervals of the length specified in summarizationinterval.

e SMC_HS PBTYPE _ENTIRE — plays back data for each input
recording session summarized as asingle sample. The sampleinterval
is the time between the requested playback startTime and endTime.

If playbackTargetisSMC_HS TARGET_FILE, then playbackType must be
SMC_HS PBTYPE_INTERVAL or SMC_HS PBTYPE_ENTIRE.

summarizationl nterval

if playbackTypeisSMC_HS PBTYPE_INTERVAL, then this specifiesthe
length in seconds of the playback intervals over which theinput dataisto be
summarized.

For other values of playbackType, applications must specify
SMC_UNUSED for this parameter.

estimationOption

specifieswhether playback may estimate thevaluesof dataitemsthat cannot
be calculated exactly. Valid values are:

« SMC_HS ESTIM_ALLOW
« SMC_HS ESTIM_DISALLOW

If SMC_HS ESTIM_DISALLOW is specified, then a subsequent call for
this playback session to smc_create_view will return an error if it includes
dataitems requiring estimation.

Thisoption isignored if playbackTypeis SMC_HS PBTYPE_RAW.

missingDataOption

specifies whether the Monitor Client Library will return playback samples
for periods of time when no datais available in the input session(s). Valid
values are;

e SMC_HS MISSDATA_SHOW — Monitor Client Library will return a
sample for periods of time lacking data.

e SMC_HS MISSDATA_SKIP—Monitor Client Library will not return
asample for periods of time lacking data; instead, the Library will
return data for the next available timeinterval for which datais
available.

If playbackTarget isSMC_HS TARGET _FILE, this parameter isignored.

CHAPTER 3 Monitor Client Library Functions

playbackTarget
specifies whether the playback session returns data to the application or
whether playback creates a new session on Historical Server. Valid values
are:

e SMC_HS TARGET_CLIENT —the playback session returns datato
the application, by means of callsto smc_refresh_ex.

e SMC_HS TARGET_FILE - playback creates a new session on
Historical Server.

directoryName
if playbackTargetisSMC_HS TARGET_FILE, thisparameter specifiesthe
directory in which the Historical Server createsthe datafile(s) and error file
for the new sessions to be created.

protectionLevel
if playbackTargetisSMC_HS TARGET_FILE, thisparameter specifiesthe
protection level of the new session to be created. Valid values are;

« SMC_HS_SESS PROT_PUBLIC
« SMC_HS_SESS PROT_PRIVATE

This parameter isignored if playbackTarget is
SMC_HS TARGET_CLIENT.

scriptOption
if playbackTarget isSMC_HS TARGET_FILE, this parameter specifies
whether Historical Server must create a script that createstablesfor loading
results (from the new session) into Adaptive Server. The choices are:

e SMC_HS SESS SCRIPT_NONE - nho script.
e SMC_HS SESS SCRIPT_SYBASE — Sybase script.

This parameter isignored if playbackTarget is
SMC_HS TARGET_CLIENT.

deleteOption
if playbackTarget isSMC_HS TARGET _FILE, this parameter specifies
whether Historical Server must del ete the input session(s) after successfully
creating a new session. The choices are;

« SMC_HS DELETE_FILES
« SMC_HS RETAIN_FILES

This parameter isignored if playbackTarget is
SMC_HS TARGET_CLIENT.

151

smc_create_playback_session

sessionldHandle
if playbackTarget isSMC_HS TARGET _FILE, this parameter must be a
pointer to avariable of type SMC_SESSION_ID, into which the Monitor
Client Library writes the identifier for the new session.

This parameter isignored if playbackTarget is
SMC_HS TARGET_CLIENT.

Return value

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET _INVALID_CONNECT Connection does not exist.
Examples This exampl e assumes that you have created a connection to Historical Server

and have a clientld.
SMC_SESSI ON_I D i nput Sessi ons|[2] ;

if (snt_create_playback _session(clientld,
i nput Sessi ons,
2,/* nunber of input sessions */
""o/* default start tine */
""/* default end tinme */
SMC HS PBTYPE | NTERVAL, /* summari ze at */
60,/* uniformmnute intervals */
SMC_HS ESTIM ALLOW/* al |l ow estimation */
SMC_HS M SSDATA SHOW /* produce a sanpl e*/
/* every minute even if no data is */
/* available for that interval */
SMC HS TARGET_CLI ENT, /* do pl ayback */
"" I* directory name */
SMC_HS SESS PROT_PUBLIC,/* so next 5 */
SMC_HS_SESS_SCRI PT_SYBASE, / * are */
SMC _HS DELETE FI LES,/* unused */
NULL)/* No output session ID */
1= SMC_RET_SUCCESS)
{
printf("snc_create_pl ayback_session failed\n");
/* do some cl eanup */

152

CHAPTER 3 Monitor Client Library Functions

Usage

See also

In aHistorical Server connection, recording sessions and playback
sessions are mutually exclusive. An application that connectsto a
Historical Server and defines a recording session, must complete the
definition of the recording session using the function
smc_initiate_recording before creating a playback session.

If the playbackTypeis SMC_HS PBTY PE_RAW, the application can
specify only one input session. Otherwise, the application can specify any
number of input sessions (but at least one), provided that all sessionswere
recorded against the same Adaptive Server installation and Monitor
Server.

If the playbackTypeisSMC_HS PBTYPE_RAW, different rules apply to
the definition of playback views. Refer to the Adaptive Server Enterprise
Monitor Historical Server User’s Guide for more information about
views.

You cannot combine playbackTarget SMC_HS TARGET_FILE with
playbackType SMC_HS PBTYPE_RAW or
SMC_HS PBTYPE_ACTUAL.

I nput sessions can include recording sessionsthat are still inthe process of
recording, unless playbackTarget isSMC _HS TARGET_FILE.

If playbackTarget isSMC_HS TARGET_FILE, then the input session
must contain performance data for the entire time from startTime to
endTime, with no gaps between input sessions.

Refer to the Monitor Historical Server User’s Guide for moreinformation
about the hs_create playback_session command.

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE No
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates
SMC_RET_INTERNAL_ERROR Internal error
SMC_INVALID_SVR _MODE Invalid server mode

smc_initiate_playback

153

smc_create_recording_session

smc_create_recording_session

Description

Syntax

Parameters

154

Initiates the definition of arecording session on Historical Server.

This function is applicable only if the connection mode is
SMC_SERVER_M_HISTORICAL.

SMC_RETURN_CODE smc_create_recording_session

(SMC_CONNECT_ID clientld,
SMC_CHARP SMSName,
SMC_INT samplelnterval,
SMC_CHARP directoryName,
SMC_CHARP startTime,
SMC_CHARP endTime,

SMC_HS_SESS _PROT_LEVEL protectionLevel,
SMC_HS_SESS_ERR_OPT errOption,
SMC_HS_SESS_SCRIPT_OPT scriptOption,SMC_SESSION_IDP
sessionldHandle)
clientld
identifies the connection.

SMSName
null-terminated string containing the name of the Monitor Server.

samplelnterval
the number of seconds to wait between consecutive samplings of data.

directoryName
null-terminated string containing the full path name to the directory
containing the data and error files created by Historical Server during
execution of this recording session.

The directory must be writable on the system on which Historical Server is
running. This might not be the same system that is running the client
application that invoked the function call.

startTime
null-terminated string containing the time to start recording, using the
format:

yyyy/ nmi dd hh:mi:ss] [tinme zone]
The default isto start immediately.

endTime
null-terminated string containing the time at which to stop the recording,
using the format:

yy/ mm dd hh: i :ss] [tine zone]

CHAPTER 3 Monitor Client Library Functions

The default isto stop 24 hours after startTime.

protectionLevel
protection level of the data recorded. Valid values are:

« SMC_HS_SESS PROT_PUBLIC
« SMC_HS_SESS PROT_PRIVATE

errOption
indicatewhat Historical Server must dowhen encountering anon-fatal error.
The choices are:

¢ SMC_HS SESS ERR _CONT - continue the session.
e SMC _HS SESS ERR HALT — stop the session.

scriptOption
indicate whether Historical Server must create a script that createstablesfor
loading results (from this recording session) into Adaptive Server. The
choices are:

e SMC_HS SESS SCRIPT_NONE — nho script.
e SMC_HS SESS SCRIPT_SYBASE — Sybase script.

sessionldHandle
pointer to avariable, which should be declared astype SMC_SESSION _ID.
If the call to smc_create recording_session succeeds, this variable contains
the ID for the recording session.

Return value

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET _INVALID_CONNECT Connection does not exist.
Examples This exampl e assumes that you have created a connection to Historical Server

and have aclientld.

SMC SESSION | D sessionld;
SMC SESSI ON | DP sessi onl dHandl e = &sessi onl d;

if (snt_create_recording_session(clientld,
"nmyMoni t or Server",
60, /* sanple interval (seconds) */
"/usr/hist_serv_hone dir",
"95/07/22 15:00", /* start time */
"95/07/23 15:30", /* end tine */
SMC_HS_SESS_PROT_PUBLI C,

155

smc_create_view

SMC_HS_SESS_ERR_CONT,
SMC_HS_SESS_SCRI PT_SYBASE,

sessi onl dHandl e)

{

I = SMC_RET_SUCCESS)

printf("snc_create_recording_session failed\n");

/* do sone cleanup */

}

Usage e InaHistorical Server connection, recording sessions and playback
sessions are mutually exclusive. An application that connectsto Historical
Server and creates a playback session must end the playback session using
the function smc_terminate_playback before creating a recording session.

» Refer to the Adaptive Server Enterprise Monitor Historical Server User’s
Guide for more information on the hs_create_recording_session

command.
Valid server modes
Mode Availability
SMC SERVER_M_LIVE No
SMC SERVER M_HISTORICAL Yes
Errors
Error Indicates
SMC_RET_INTERNAL_ERROR Internal error

SMC_RET_INVALID_SVR_MODE

Invalid server mode

See also smc_initiate_recording

smc_create_view

Description Creates aview that can contain one or more data items.

For information about data items, refer to Chapter 2, “Data ltems and

Statistical Types”.

You can use the smc_create_view function with both Monitor Server and
Historical Server. When used with Historical Server
(SMC_SERVER_M_HISTORICAL), it createsaview for the recording or

playback session that is being defined.

Syntax SMC_RETURN_CODE smc_create_view

(SMC_CONNECT_ID clientld,

156

CHAPTER 3 Monitor Client Library Functions

Parameters

Return value

Examples

SMC_DATAITEM_STRUCTP dataltemListHandle,

SMC_SIZET dataltemListLength,
SMC_CHARP viewName,
SMC_VIEW_IDP viewldHandle)

clientld

identifies the connection.

dataltemListHandle

pointer to array of SMC_DATAITEM_STRUCTS.

dataltemListLength

number of dataitemsin the array pointed to by the dataltemListHandle.

viewName

null-terminated string containing a descriptive name for thisview. This
name can includea—z, A —Z, 0— 9, and underscore (_) characters, or can
be NULL.

Used only for aHistorical Server connection. For alive connection, theview
nameisignored.

viewldHandle

pointer to avariable, which should be declared astype SMC_VIEW _ID. If
the call to smc_create_view succeeds, this variable contains the ID for the
view.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET _INVALID_CONNECT Connection does not exist.

This example assumes that you have created a connection and have a clientld.

SMC_DATAI TEM STRUCT dataltem =
{ SMC_NAME_PAGE_LOd CAL_READ,
SMC_STAT_VALUE_SAMPLE };
SMC_DATAI TEM STRUCTP dat al t enHandl e = &dataltem
SMC VI EWID vi ew d;
SMC VIEW I DP vi ewHandl e = &vi ew d;

if (snc_create_view(clientld,
dat al t enrHandl e,
1, /* just one dataltem*/
NULL, /* this is a Mnitor Server view */
vi ewl dHandl e) = SMC RET_SUCCESS)

157

smc_create_view

Usage

See also

158

printf("snc_create_view failed\n");
/* do sone cleanup */

}

Refer to Chapter 2, “ Data Items and Statistical Types” for rulesfor using
views with live views.

When called against a Historical Monitor connection, smc_create_view
must be preceded by a call to smc_create_recording_session or
smc_create_playback_session.

When used in Historical Server during the definition of arecording
session, it defines a view to be recorded by Historical Server during the
recording session.

When used in Historical Server during aplayback session, it selectsaview
for playback from those previously recorded in recording session(s). If the
playback session uses more than one input session, then the selected view
must exist in all input sessions and use the same name, data items, and
filters.

Depending on whether the playback session was created for “raw” or
summarizing playback, the playback view may or may not include certain
dataitemsfromthe original view. Refer to the Adaptive Server Enterprise
Monitor Historical Server User’s Guide for more information on the
hs_create_playback_view command.

Valid server modes

Mode Availability
SMC_SERVER M _LIVE Yes
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates

SMC_RET_INVALID_API_FUNC_SEQUENCE Invalid calling sequence of

Monitor Client Library

functions
SMC RET_INVALID _DINAME Invalid dataitem
SMC_RET _INVALID DI _STATTYPE Invalid dataitem statistic type
SMC_RET_INSUFFICIENT_MEMORY Insufficient memory

smc_create_recording_session, smc_create_playback_session,
smc_initiate_recording, smc_initiate_playback, smc_drop_view

CHAPTER 3 Monitor Client Library Functions

smc_drop_alarm

Description

Syntax

Parameters

Return value

Examples

Usage

Removes an adlarm on adataitemin aview.

SMC_RETURN_CODE smc_drop_alarm

(SMC_CONNECT_ID clientld,
SMC_VIEW_ID viewld,
SMC_ALARM_ID alarmld)

clientld
identifies the connection.

viewld
identifies a view created on the connection.

alarmid
identifies the alarm.

Return value Indicates

SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.

SMC_RET BUSY Function not executed, connection is busy.

SMC_RET _INVALID_CONNECT Connection does not exist.

The following example assumes that:

¢ You have created a connection and have a clientld.

¢ You have created a view on that connection and have a view!d.
¢ You have created an alarm on that view and have an alarmid.

if (snc_drop_alarn(clientld,
vi ew d,
alarm d) !'= SMC_RET_SUCCESS)
{
printf("snc_drop_alarmfailed\in");
exit(1l);
}

You cannot drop an alarm created while defining a Historical session (that is,
when the connection modeis SMC_SERVER_M_HISTORICAL).

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE Yes
SMC_SERVER_M_HISTORICAL No

159

smc_drop_filter

See also

Errors
Error Indicates
SMC_RET_INVALID_VIEWID Function failed.
SMC_RET_INVALID_ALARMID Alarm does not exist.

smc_create_alarm_ex, smc_drop_view

smc_drop_filter

Description

Syntax

Parameters

Return value

Examples

160

Removes afilter on adataitem.

SMC_RETURN_CODE smc_drop_filter
(SMC_CONNECT_ID clientld,
SMC_VIEW_ID viewld,
SMC_FILTER_ID filterld)

clientld
identifies the connection.

viewld
identifies a view created on the connection.

filterld
identifies the filter to be dropped.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET _INVALID_CONNECT Connection does not exist.

The following example assumes that:

* You have created a connection and have a clientld.

e You have created a view on that connection and have a viewld.
* You have created afilter on that view and have afilter|d.

if (snmc_drop_ filter(clientld,
vi ew d,
filterld) !'= SMC_RET_SUCCESS)
{
printf("snc_drop_filter_failed\n");
/* do sone cl eanup */

CHAPTER 3 Monitor Client Library Functions

Usage

See also

}

« Dropping afilter takes effect at the next call to smc_refresh following the
call to smc_drop_filter.

¢ You cannot drop afilter created while defining a Historical Server session
(that is, when the connection mode is
SMC_SERVER_M_HISTORICAL).

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE Yes
SMC_SERVER_M_HISTORICAL No

Errors
Error Indicates
SMC_RET_INVALID_VIEWID View does not exist.
SMC_RET_INVALID_FILTERID Filter does not exist.

smc_create_filter, smc_drop_view

smc_drop_view

Description

Syntax

Parameters

Return value

Examples

Removes a view from a connection.

SMC_RETURN_CODE smc_drop_view
(SMC_CONNECT_ID clientld,
SMC_VIEW_ID viewld)
clientld
identifies the connection.

viewld
identifies aview created on the connection.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET_INVALID_CONNECT Connection does not exist.

The following example assumes that:

¢ You have created a connection and have aclient!d.

161

smc_get_command_info

Usage

See also

* You have created aview on that connection and have a viewld.

if (snc_drop_viewclientld,
view d) !'= SMC_RET_SUCCESS)
{
printf("snc_drop_view failed\n");
/* do sone cleanup */

}

« All darmsand filters associated with the data items in the view are
dropped.

e You cannot drop aview created on a Historical Server session (that is,
when the connection modeis SMC_SERVER M _HISTORICAL).

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE Yes

SMC _SERVER M _HISTORICAL No

Error

Error Indicates
SMC_RET_INVALID_VIEWID View does not exist.

smc_create_view, smc_drop_alarm, smc_drop_filter

smc_get_command _info

Description

Syntax

Parameters

162

Retrieves detailed information about an alarm or error notification.
SMC_RETURN_CODE smc_get_command_info

(SMC_CONNECT_ID clientld,
SMC_COMMAND _ID commandid,
SMC_INFO_TYPE infoType,
SMC_VALUE_UNIONP infoValue,
SMC_SIZETP outputLengthHandle)

clientld

identifies the connection.

commandld
identifies an invocation of a callback function.

CHAPTER 3 Monitor Client Library Functions

infoType

describes the type of requested information. See “ Data available for alarm
callbacks” on page 129.

infovalue

pointer to an SMC_VALUE_UNION structure receiving the value of
infoType.

outputLengthHandle

Return value

apointer to an integer variable. Upon a successful call to
smc_get_command_info, theMonitor Client Library writesintothisvariable.
The actual length, in bytes, of the datato be copied into *infoValue (not
including the null-terminator byte). If the infoVal ue datatype is not
SMC_CHARRP , this parameter isignored. Pass null if the information is not
desired.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_API_FUNCTION Invalid use of obsolete and replacement
functions within the same program.

SMC_RET _INVALID_COMMAND Instance of command does not exist.
SMC_RET_INVALID_CONNECT Connection does not exist.
SMC_RET_INVALID_INFOTYPE Invalid context for requested

information type.

SMC_RET_INVALID_PARAMETER Invalid parameter value.

Examples This example assumes that:

An error callback function is executing.
You have created a connection and have aclientld.

The example codeisbeing used in the context of aMonitor Client Library
API callback function, which supplies the commandi d.

SMC_VALUE_UNI ON nyVal ue;
SMC_VALUE_UNI ONP nyVal uePtr = &nyVal ue;
if (snc_get_command_info(clientld,
commandl d,
SMC_| NFO_ERR_NUM
nyVal uePtr,
NULL) !'= SMC _RET_SUCCESS)
{

printf("snt_get_command_info failed\n");

163

smc_get_command_info

Usage

164

/* do sone cleanup */

}

For the definition of an SMC_VALUE_UNION structure, see “Union:
SMC_VALUE_UNION”" on page 240.

For data of type SMC_CHARRP, stringValue points to the value. The
Monitor Client Library allocatesthe memory for thisstring and the calling
application must deallocate it using free().

To retrieve just the length in bytes of a string, pass null for infoValue and
avalid pointer for outputLengthHandle.

Table 3-6 lists the command infoType and associated datatype:

Table 3-6: Monitor Client Library command information types

Information type infoValue datatype Available

SMC_INFO_ALARM_ACTION_DATA SMC_CHARP Inanaarm
callback
function

SMC_INFO_ALARM_ALARMID SMC_SIZET Inanaarm
callback
function

SMC_INFO_ALARM_CURRENT _ Depends on the data Inan alarm
VALUE item and statistictype calback
combination. (See function

Chapter 2, “Data ltems
and Statistical Types’.)

SMC_INFO_ALARM_DATAITEM SMC_VOIDP Inanaarm
callback
function

SMC_INFO_ALARM_ROW SMC_SIZET Inanaarm
callback
function

SMC_INFO_ALARM_THRESHOLD _ Dependsondataitem/ Inanaarm

VALUE statistic type callback

combination. (See function

Chapter 2, “Data ltems
and Statistical Types’.)

SMC_INFO_ALARM_TIMESTAMP SMC _CHARP Inan aarm
callback
function

SMC_INFO ALARM VALUE SMC_INT Inan alarm

DATATYPE callback
function

CHAPTER 3 Monitor Client Library Functions

Information type infoValue datatype Available

SMC_INFO_ALARM_VIEWID SMC_SIZET Inanadarm
callback
function

SMC_INFO_ERR_MAPSEVERITY SMC_SIZET In an error
callback
function

SMC_INFO_ERR_MSG SMC_CHARP In an error
callback
function

SMC_INFO_ERR_NUM SMC_SIZET In an error
callback
function

SMC_INFO_ERR_SEVERITY SMC _SIZET In an error
callback
function

SMC_INFO_ERR_SOURCE SMC_SIZET In an error
callback
function

SMC_INFO_ERR _STATE SMC_SIZET In an error
callback
function

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE Yes
SMC_SERVER_M_HISTORICAL Yes

Errors Thisfunction does not employ error callback functions.

See also smc_create_alarm_ex

smc_get_dataitem_type

Description Returns the datatype for the specified dataitem.

Syntax SMC_RETURN_CODE smc_get_dataitem_type
(SMC_DATAITEM_STRUCTP dataltemHandle,
SMC_DATAITEM_TYPEP ptrType)

Parameters dataltemHandle
pointer to data item and statistical type.

165

smc_get_dataitem_type

ptrType
pointer to data value type.

Return value

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.
Examples SMC_DATAI TEM STRUCT dataltem =

{ SMC_NAME_PAGE_LOGd CAL_READ,
SMC_STAT_VALUE_SAMPLE };
SMC_DATAI TEM STRUCTP dat al t enHandl e = &datal tem
SMC_DATAI TEM TYPE dat al t enilype;
SMC_DATAI TEM TYPEP dat al t emlypeHandl e = &dat al t enType;

if (snc_get_dataitemtype(dataltentandl e,
dat al t enifypeHandl e) ! = SMC_RET_SUCCESS)
{
printf("snc_get_dataitemtype failed\n");
/* do sone cleanup */

}
Usage e Thedataitem typesare asfollows:

Data item type Description

SMC _DI_TYPE _CHARP Pointer to a character string.

SMC_DI_TYPE_DATIM Sybase date and time.

SMC _DI_TYPE_DOUBLE Double-precision floating-point number.

SMC _DI_TYPE_ENUMS An enumerated datatype, specific to the data
item. Enumerated types are defined in the
mctype.sh include file and in Appendix B,

“Datatypes and Structures’.
SMC_DI_TYPE_INT Integer.
SMC DI_TYPE LONG Long integer.

e If you supply adataitem and statistical type that Monitor Client Library
does not support, the output parameter type is set to
SMC_DI_TYPE_NONE.

See also smc_create_view

166

CHAPTER 3 Monitor Client Library Functions

smc_get dataitem_value

Description

Syntax

Parameters

Return value

Examples

Returns data after arefresh. Thisdatais returned one dataitem of onerow at a
time.

SMC_RETURN_CODE smc_get_dataitem_value

(SMC_CONNECT_ID clientld,
SMC_VIEW_ID viewld,
SMC_DATAITEM_STRUCTP dataltemHandle,
SMC_SIZET row,

SMc:VALU E_UNIONP returnVal)

clientld
identifies the connection.

viewld
identifies a view created on the connection.

dataltemHandle
pointer to dataitem and statistic type.

row
row number of requested data.

returnval
return value that contains the value of one dataitem.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC _RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT No connection exists with the specified I1D.

The following example assumes that:

e You have created a connection and have a clientld.

e You have created aview on that connection and have aviewld.
e Theview contains the dataltem defined in the example.

¢ You have successfully executed arefresh call.

e Therow count is greater than zero.

SMC _DATAI TEM STRUCT dataltem =
{ SMC_NANMVE_PAGE_LOG CAL_READ,
SMC_STAT_VALUE_SAMPLE };
SMC_DATAI TEM STRUCTP dat al t enHandl e = &dataltem
SMC_VALUE_UNI ON r et urnVal ue;

167

smc_get_row_count

SMC_VALUE_UNI ONP returnVal ueHandl e = & eturnVal ue;
if (snc_get_dataitemyvalue(clientld,
vi ew d,
dat al t enHandl e,
0,/* row nunber */
returnVal ueHandl e) !'= SMC_RET_SUCCESS)

{
printf("snc_get_dataitemvalue failed\n");
/* do sone cleanup */
}
Usage e Thefirst row of dataisindexed by row number zero, the second by one,
and so on.

e For dataof type SMC_DI_TYPE_CHARP, the Monitor Client Library
allocatesthe memory. The calling application must deallocate the memory
using free().

e SeeAppendix B, “Datatypes and Structures” for alisting of membersin
SMC_VALUE_UNION.

* Seethemctype.shincludefileor Appendix B, “ Datatypes and Structures’
for the values for enumerated types.

Errors
Error Indicates
SMC_RET INVALID_VIEWID View does not exist.
SMC_RET_INVALID_DINAME Invalid dataitem.
SMC_RET_INVALID_DISTAT Invalid dataitem statistic type.

SMC_RET_INVALID_PARAMETER Invalid parameter.

See also smc_refresh_ex, smc_get_dataitem_type

smc_get _row_count
Description Returns the number of rows returned by a given view after arefresh.

Syntax SMC_RETURN_CODE smc_get_row_count
(SMC_CONNECT_ID clientld,
SMC_VIEW_ID viewld,
SMC_SIZETP rowCountHandle)
Parameters clientld
identifies the connection.

168

CHAPTER 3 Monitor Client Library Functions

Return value

Examples

Usage

See also

viewld

identifies a view created on the connection.

rowCountHandle

pointer to avariableinto which Monitor Client Library writesthe number of
rowsin aview.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET _INVALID_CONNECT Connection does not exist.

The following example assumes that:

You have created a connection and have aclientld.
You have created a view on that connection and have a viewld.
You have successfully executed arefresh call.

SMC _SI ZET r owCount ;
SMC_SI ZETP r owCount Handl e = & owCount ;
if (snc_get_row count(clientld,
nvi ewm d,
rowCount Handl e) !'= SMC_RET_SUCCESS)
{
printf("snc_get_row count failed\n");
/* do sone cleanup */

}

Thefirst row of dataisindexed by row number 0, the second by 1, and so on.

Valid server modes

Mode Availability

SMC_SERVER_M_LIVE Yes

SMC_SERVER_M_HISTORICAL Yes (during playback)
Error

Error Indicates

SMC_RET_INVALID_VIEWID View does not exist.

smc_refresh_ex, smc_get_dataitem_value

169

smc_get_version_string

smc_get_version_string

Description

Syntax

Parameters

Return value

Examples

Usage

Returns the Monitor Client Library version number.

SMC_RETURN_CODE smc_get_version_string
(SMC_CHARPP versionBuffer)

versionBuffer
return value that contains the version string.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.

SMC _CHARP ver si onBuf f er Handl e;
if (snc_get_version_string(&versionBufferHandl e)
I = SMC_RET_SUCCESS)
{
printf("snc_get_version_string failed\n");
/* do sone cl eanup */

}

printf("%\n", versionBufferHandl e);
free(versi onBuf f er Handl e) ;

e The Monitor Client Library allocates the memory for this string. The
calling application must deallocate this memory using free().

e Thisfunction does not require a connection.

smc_initiate_playback

Description

Syntax

Parameters

Return value

170

Concludes the definition of views for a playback session on Historical Server,

and prepares to start playback.

SMC_RETURN_CODE smc_initiate_playback
(SMC_CONNECT_ID clientld)

clientld
identifies the connection.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.

CHAPTER 3 Monitor Client Library Functions

Examples

Usage

Return value Indicates

SMC_RET_INVALID_CONNECT Connection does not exist.

This example assumes that:

You have created a connection to Historical Server and have aclientld.
You have successfully executed smc_create_playback_session.
You have created at |east one view on the connection.

if (snt_initiate_playback(clientld) !=
SMC_RET_SUCCESS)
{

printf("snc_initiate_playback failed\n");
/* do sone cleanup */

}

The data for a playback session is defined by callsto smc_create_view,
made after acall to smc_create_playback session and before the call to
smc_initiate_playback.

If this playback session was defined to create anew session from playback
(that is, if smc_create_playback_session was called with playbackTarget
SMC_HS TARGET_FILE), then smc_initiate_playback creates the new
session. The application must then call smc_terminate_playback to
conclude the playback session.

If the playback session was defined to play back data to the application
(that is, if smc_create_playback_session was called with playbackTarget
SMC_HS TARGET_CLIENT), thentheapplication callssmc_refresh_ex
toretrieve each playback sample, and smc_terminate_playback to conclude
the playback session.

After asuccessful call to smc_terminate_playback, the Historical Server
connection can be used to define another playback session, or to create a
recording session.

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE No
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates
SMC_RET_INVALID_SVR_MODE Invalid server mode.
SMC_RET_INTERNAL_ERROR Internal error.

171

smc_initiate_recording

See also smc_create_view, smc_create_playback_session, smc_refresh_ex,
smc_terminate_playback

smc_initiate_recording

Description Completes the definition of arecording session against Historical Server, that
is,an SMC_SERVER_M_HISTORICAL connection only.

Syntax SMC_RETURN_CODE smc_initiate_recording
(SMC_CONNECT_ID clientld)

Parameters clientld

identifies the connection.

Return value

Return value Indicates

SMC_RET_SUCCESS Function succeeded.

SMC_RET_FAILURE Function failed.

SMC_RET _INVALID_CONNECT Connection does not exist.
Examples The following example assumes that:

* You have created a connection to Historical Server and have a clientld.
e You have successfully executed smc_create_recording_session.
* You have created at least one view on the connection.

if (snc_initiate_recording(clientld) !=
SMC_RET_SUCCESS)

{
printf("snc_initiate_recording failed\n");
/* do sone cleanup */
}
Usage » Thedatafor the recording session is defined by callsto smc_create_view

and smc_create_filter that are made after acall to
smc_create_recording_session and before the call to
smc_initiate_recording.

» After asuccessful call to smc_initiate_recording, the Historical Server
connection can be used to define another recording session, or to create a
playback session.

172

CHAPTER 3 Monitor Client Library Functions

See also

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE No
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates
SMC_RET_INVALID_SVR_MODE Invalid server mode.
SMC_RET_INTERNAL_ERROR Internal error.

smc_create_alarm_ex, smc_create_filter, smc_create_view,
smc_create_recording_session, smc_terminate_recording_session

smc_refresh_ex

Description

Syntax

Parameters

Return value

Examples

Obtains a sampling of datafor all views on a connection.

SMC_RETURN_CODE smc_refresh_ex
(SMC_CONNECT_ID clientld,
SMC_SIZET step)
clientld

identifies the connection.

step
during playback in aHistorical Server connection, allows skipping ahead a
specified number of samples. Ordinarily, on playback, stepis+1 to retrieve
the next sample (negative step values are not alowed).

Does not apply for live connections; use SMC_UNUSED.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.
SMC_RET_INVALID_CONNECT Connection does not exist.

This example assumes that:
* You have created a connection and have aclient!d.
¢ You have created at | east one view on that connection.

if (snc_refresh_ex(clientld, SMC_UNUSED)

173

smc_terminate_playback

I = SMC_RET_SUCCESS)

{

printf("snc_refresh_ex failed\n");
/* do sone cleanup */

}

Usage e Inaplayback session, smc_refresh_ex must be preceded by acall to

smc_initiate_playback.

e If youtry to refresh aview at the same time someone creates a database,

the refresh may fail.

« Arefreshfor aview may fail if one or more databases on Adaptive Server

arein single-user mode.

Valid server modes

Mode Availability

SMC SERVER M _LIVE Yes

SMC_SERVER M _HISTORICAL Yes (for playback)
Errors

Error Indicates

SMC_RET_INVALID_API_FUNCTION Invalid useof obsolete and replacement

functionsin program.

SMC_RET_INVALID_SVR_MODE

Invalid server mode.

See also smc_connect_ex

smc_terminate_playback

Description Concludes a playback session on Historical Server.

Syntax SMC_RETURN_CODE smc_terminate_playback

(SMC_CONNECT_ID clientld)

Parameters clientld
identifies the connection.

Return value

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.

SMC_RET_INVALID_CONNECT

Connection does not exist.

174

CHAPTER 3 Monitor Client Library Functions

Examples This example assumes that:
¢ You have created a connection to Historical Server and have a clientld.
¢ You have successfully executed smc_create_playback_session.
¢ You have created at |east one view on the connection.
¢ You have successfully executed smc_initiate_playback.
if (snc_term nate_playback(clientld)
I = SMC_RET_SUCCESS)
{
printf("snt_term nate_pl ayback failed\n");
/* do sone cleanup */
}

Usage e After asuccessful call to smc_terminate_playback, the Historical Server
connection can be used to create another playback session, or to define a
recording session.

Valid server modes
Mode Availability
SMC_SERVER M_LIVE No
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates
SMC_RET INVALID_SVR MODE Invalid server mode.
SMC _RET_INTERNAL_ERROR Internal error.

See also smc_create_playback _session, smc_initiate_playback

smc_terminate_recording

Cancels arecording session on a Historical Server connection.

Description

Syntax

Parameters

SMC_RETURN_CODE smc_terminate_playback(

SMC_CONNECT _ID clientld,
SMC_SESSION_ID sessionld

SMC_HS_SESS_DELETE_OPTdeleteOption,

)
clientld

identifies the Monitor connection.

175

smc_terminate_recording

Return value

Examples

Usage

176

sessionld
identifies the recording session to cancel.

deleteOption
specifies whether Historical Server should delete the datafiles, if any,
associated with the session. The choices are SMC_HS DELETE _FILES
and SMC_HS RETAIN_FILES.

This parameter isignored if the session has not been initiated or if it has not
started recording.

Return value Indicates
SMC_RET_SUCCESS Function succeeded.
SMC_RET_FAILURE Function failed.

SMC_RET _INVALID_CONNECT Monitor connection does not exist.

This example assumes that:
* You have created a connection to Historical Server and have a clientld.

* You have successfully executed smc_create_recording_session and havea

sessionld.
if (snc_term nate_recordi ng(
clientld,
sessionl d,

SMC_HS DELETE_FI LES)
I = SMC_RET_SUCCESS)
{
printf("snc_termi nate_recording failed\n");
/* do sone cleanup */

}

e |f therecording session had already been initiated, then
smc_terminate_recording cancels the session. If the session had been
scheduled, but had not actually started recording, then
smc_terminate_recording causes the session to be unscheduled. If the
session had actually started recording, then smc_terminate_recording
causes the session to end prematurely, that is, before the scheduled end
time.

e |f therecording session had not been initiated, then
smc_terminate_recording cancels definition of therecording session. After
asuccessful call to smc_terminate_recording, the HISTORICAL
connection may be used to create another recording session, or to definea
playback session.

CHAPTER 3 Monitor Client Library Functions

Valid server modes

Mode Availability
SMC_SERVER_M_LIVE No
SMC_SERVER_M_HISTORICAL Yes

Errors
Error Indicates

SMC_RET_INVALID_SVR_MODE

Invalid server mode.

SMC_RET_INTERNAL_ERROR

Internal error.

See also

smc_create_recording_session, smc_initiate_recording

177

smc_terminate_recording

178

CHAPTER 4

Building a Monitor Client Library
Application

Thischapter containsinformation about buildingaMonitor Client Library
application on the following platforms:

Topic Page
Building on UNIX platforms 180
Building on Windows platforms 182

Thischapter describesthe stepsrequired to build aMonitor Client Library
application, including:

e« Compiling
e Linking
¢ Running

Two sample programs are provided with the Monitor Client Library:
e testmon, which obtains data from a Monitor Server

e testhist, which creates a Historical Server recording session and
placesdatainto afile

You can use the build procedures supplied with these sample applications
asamodel for other applications. The sample programs are discussed
separately for UNIX and Windows platforms.

Note The following instructions assume that the Monitor Client Library
isinstalled in the Sybaseroot directory, and that the SYBASE environment
variableis set to thisroot directory.

179

Building on UNIX platforms

Building on UNIX platforms

This section explains how to compile, link, run, and build the sample
applications for UNIX platforms.

Compiling the application

Each source file that uses the Monitor Client Library must include the
following line:

#i ncl ude "nctpublic.h"

The header files for Monitor Client Library are installed, by default, in the
monclt/include directory of the directory indicated by the SYBASE
environment variable.

Open Client header files, which are needed for compilation, are also installed
in this directory. Include this directory in the compilation command line. For
example, you could enter:

cc -1$SYBASE/ noncl t/i ncl ude nyprog.c

If the header files have been installed in directories other than the default,
substitute those directories in the compilation command line.

Linking the application

180

The Monitor Client Library isinstalled in the monclt/lib directory of the
directory indicated by the SYBASE environment variable. In addition, Open
Client libraries, which arerequired for linking with the Monitor Client Library,
areinstalled in the monclt/lib directory. To find the names of the libraries with
which you must link your application, see the make files supplied with the
examples.

CHAPTER 4 Building a Monitor Client Library Application

Running the application

To run aMonitor Client Library application, set the SYBASE environment
variable to the Open Client installation directory that contains the locales,
charsets, and lib directories. These directories are loaded during Monitor
Client Library installation.

Note Adaptive Server and Monitor Server must be configured and running on
your network before you run aMonitor Client Library application.

Building the sample applications

The sample programs and the procedures to build them are installed, by
default, in the $SYBASE/sample/monclt directory. The two versions of the
build procedure are:

e Makefile, which uses the native ANSI compiler and linker
e Makefile_gcc, which usesthe GNU C compiler and linker
To build and run the sample programs, use the following steps:

1 If theentriesfor the Adaptive Server, Monitor Server, and Historical
Server that you intend to use with the examples do not appear in your
interfaces file, add the entries. You can use monclt/bin/sybinit to edit the
interfacesfile.

2 Copy the sample files from the monclt/sample directory to another
directory to keep the original sample for future reference and enable you
to edit your own copy.

3 If you are not already there, change your directory to the directory that
contains your copies of the sample files.

4 Edit the example.h file to supply the names of:
e Adaptive Server
e Monitor Server
e Historical Server
¢ Login name on Adaptive Server
e Password

¢ interfacesfilelocation

181

Building on Windows platforms

If you are using the default interfacesfilelocated in the directory indicated
by the SYBASE environment variable, you can accept the default null
string (") for the interfaces file name. If you are not using the default
interfacesfile, specify the full path name of the interfacesfile.

5 Setthe MONCLTLIBDIR environment variable to the root installation
directory for Monitor Client Library, which is by default, the monclt
directory of the Sybase root installation directory:

set env MONCLTLI BDI R $SYBASE/ noncl t

6 You can edit the make files and change the value of the SYBASE variable
to point to a different Sybase root directory. By default, it points to
$MONCLTLIBDIR.

7 Usethe make utility to build the test programs.
If you use the native UNIX make utility, enter:
make al |
If you use the GNU compiler, enter:
make -f Makefile_gcc
8 Runthe sample programs.

To run the program that retrieves and displays live data from Monitor
Server, enter:

./testnon

To run the program that creates a recording session using Historical
Server, enter:
./ testhist

Building on Windows platforms

This section describes how to compile, link, run, and build the sample
applications on a Windows platform.

Compiling the application

To compile aMonitor Client Library application on a Windows platform, do
the following:

182

CHAPTER 4 Building a Monitor Client Library Application

1 Includethefollowing line in each source file that uses Monitor Client
Library:
#i ncl ude "ntpublic.h"

2 Include the path of the directory that contains the Monitor Client Library
and Open Client header filesin thelist of directories (sometimescalled the
Include path) in which the C compiler preprocessor looksfor header files.
The header filesfor Monitor Client Library and Open Client are installed,
by default, in the C:\SYBASE\INCLUDE directory.

3 Setthe compiler preprocessor option to define the WIN and WIN32
preprocessor macros.

4 Set the code generation option to use the __cdecl calling convention.

Note To useacalling convention other than the default, you must declareitin
each callback function that usesit.

Linking the application

The Monitor Client Library is contained in the smcapi32.1ib file, which is
installed in the C:\SYBASE\LIB directory.

You can specify the full path name of thelibrary or the smcapi32.lib file name
inthelist of librariesfor the linker to use for your application. However, if you
include only the file name, you must include the C:\SYBASE\LIB directory in
thelist of directoriesin which the linker looks for libraries.

Running the application

Refer to the release bulletin for Adaptive Server Enterprise Monitor for alist
of software required to run a Monitor Client Library application.

183

Building on Windows platforms

Define the SYBASE environment variable to indicate the directory where the
Sybase client software has been installed. Theini directory within this
directory must contain the sgl.ini file. Usethe SQLEDIT utility to set up thisfile
toincludethe names of any Adaptive Server installations, Monitor Servers, and
(optionally) Historical Servers that your application uses.

Note Adaptive Server and Monitor Server must be configured and running on
your network before you run a Monitor Client Library application.

Building the sample applications

184

The sample programs and the build procedures to build them areinstalled in
the C:\SYBASE\SAMPLE\MONCLT\TESTMON and
C:\SYBASE\SAMPLE\MONCLT\TESTHIST directories.

For each of the sample programs, thereisaproject (.mak) file. For applications
to be built using Microsoft Visual C/C++ version 4.0 and to be run under
WindowsNT or Windows 95 as a console application, the two project filesare
TESTMO32.MAK and TESTHI32.MAK.

To build and run the sample programs, use the following steps:

1 Modify the PATH environment variable to include the C:\SYBASE\DL L
directory in which the Sybase DLLs were installed.

2 If you have not already done so, set the SYBASE environment variable to
the Sybase \SYBASE root installation directory.

3 If you do not have the appropriate server namesin the sgl.ini file, add the
entriesfor the Adaptive Server instal lation, Monitor Server, and Historical
Server that you intend to use to the C:\SYBASE\INI\SQL.INI file.

4 Edit the\SYBASE\SAMPLE\MONCLT\TESTMON\ EXAMPLE.H and
\SYBASE\SAMPLE\MONCLT\TESTHIST\ EXAMPLE.H files to supply
the names of the Adaptive Server, Monitor Server, Historical Server (for
TESTHIST only), login name on Adaptive Server, and password.

5 Open the project (.mak) file for the sample application you want to build.

* Tousethe program that tests a live connection to Monitor Server,
enter:

\ SYBASE\ SAMPLE\ MONCLT\ TESTMON\ TESTMO32. MAK
e Tousethe program that tests Historical Server, enter:

CHAPTER 4 Building a Monitor Client Library Application

\ SYBASE\ SAMPLE\ MONCLT\ TESTHI ST\ TESTHI 32. MAK

If the Monitor Client Library isinstalled in adirectory other than
\SYBASE:

¢ Modify the compiler preprocessor option to include the INCLUDE
subdirectory of the installation directory, instead of the default
\SYBASE\INCLUDE directory, inthelist of directoriesin whichtheC
compiler preprocessor |ooks for header files.

e Editthelist of librariesfor the linker to use for the application so that
it specifies the full path name of the library, instead of the
\SYBASE\LIB\SMCAPI32.LIB default directory path name.

Build the project.

Run the application.

To run applications under WindowsNT or Windows 95, enter the name of
the executable program from a Command Prompt window. For example:

C: \ SYBASE\ SAMPLE\ MONCLT\ TESTMON\ W nDebug\ TESTMC32

185

Building on Windows platforms

186

CHAPTER 5 Monitor Client Library
Configuration Instructions

This chapter describes the installation and configuration process for

Monitor Client Library.

Topic Page
Loading Monitor Client Library 187
Results of the load 188
Confirming your login account and permissions 188
Modifying the interfaces file 188
Setting up the user environment 190
Using Monitor Client Library 191

Loading Monitor Client Library

To movetheMonitor Client Library filesfrom the distribution mediaonto
your machine, use Studio Installer. Thisutility allowsyouto load all of the
products you have ordered onto one machine in one Studio Installer
session or to distribute your software among different licensed machines

by running separate Studio Installer sessions.

Using Studio Installer

If you have not already done so, follow the instructionsin the installation

guide to load Monitor Client Library onto your machine.

After loading the software, return to this chapter to complete the

installation and configuration of Monitor Client Library.

187

Results of the load

Results of the load

The Studio Installer utility places the Monitor Client Library software in the
load directory you specified to Studio Installer during the installation process.
The default load directory is the $SYBASE directory.

Theload directory contains all software and other files for Monitor Client
Library, including the local esand char sets subdirectories at the correct version
level for Monitor Client Library.

Confirming your login account and permissions

To perform the tasks described in this chapter, you must belogged in using the
“sybase” account or some other account that has read, write, and search
(execute) permissions on the load directory. The load directory isthe directory
name you supplied to Studio Installer when you loaded the Monitor Client
Library software onto your machine. The default load directory is the
$SYBASE directory.

Modifying the interfaces file

188

Before aMonitor Client Library application can run, it must have accessto an
interfaces file that contains entries for Adaptive Server Enterprise Monitor.
Theinterfacesfile can exist on alocal or remote machine, so long as the
Monitor Client Library application has accessto thefile system containing the
interfacesfile.

If aninterfacesfile doesnot exist on amachinewhereaMonitor Client Library
application will run and an interfacesfile is not accessible remotely, you must
Create one.

Theinterfaces file accessed by a Monitor Client Library application must
contain entries for the following servers:

» The Adaptive Server installations being monitored
e The Monitor Server(s) that Monitor Viewer isusing

e Optionaly, the Monitor Historical Server if oneisbeing used

CHAPTER 5 Monitor Client Library Configuration Instructions

The entries that you add to the interfaces file accessed by the Monitor Client
Library application must match the entries that already exist in the interfaces
file for the servers, on the server machine. Those entries define the server
names, their host machine names, and their port numbers. You must use the
same values on the client machine. See the person who installed Monitor
Server and Monitor Historical Server to obtain the entries for the servers.

The general format for additions to a client interfacesfileis:

sql _server _nane

query entry
naster entry

noni t or _server _nane
query entry
naster entry

hi storical _server_nane
query entry
naster entry

Use the sybinit utility or atext editor to add entries to the interfaces file.

Note Beforeinvoking sybinit, make sure that your SYBASE environment
variable points to the directory containing the interfaces file that you want to
change or, if the file does not yet exist on your machine, the directory where
you want it to reside.

If you use atext editor to update the interfaces file, entries must comply with
the following rules:

e Theentry cannot contain blank lines.
¢ Theserver_nameline must start in the first column of the interfaces file.

e Theentriesfor query and master must have one tab preceding them. You
must indent the query and master lines using the Tab key; do not use the
space bar to indent these two lines.

If you use sybinit to edit the interfaces file, the utility enforces these rules.

For information about editing interfacesfiles, specificsabout theinterfacesfile
format, and details about parameters within an interfaces file entry, see
Configuring Adaptive Server Enterprise for your platform.

189

Setting up the user environment

Setting up the user environment

On start-up, a Monitor Client Library application must:
¢ The correct version of the locales and charsets directories
* Aninterfacesfile

The SYBASE environment variable defines the location of the locales and
charsets directories. The SYBASE variable also defines the default |ocation of
theinterfacesfile; however, the Monitor Client Library application might need
to override that default location.

Setting the SYBASE environment variable

When a user startsa Monitor Client Library application, the directory pointed
to by the SYBASE environment variable must contain the correct version of the
locales and charsets directories. Therefore, users must set their SYBASE
environment variable to point to the monclt subdirectory of the load directory
(the directory where the Studio Installer placed Monitor Client Library
software).

Overriding the default location of the interfaces file

190

The default location of the interfacesfile is the directory pointed to by the
SYBASE environment variable. Since the SYBASE environment variable must
point to the load directory, then one of the following statements also must be
true when users run a Monitor Client Library application:

e Theinterfacesfile must be located in the load directory, or

e The Monitor Client Library application code must override the default
location of the interfacesfile.

To override the default location, the Monitor Client Library application
must call the smc_connect function, specifying an explicit valuein the
interfacefile parameter. In most cases, it would be appropriate to obtain
the value of the interfaceFile parameter from the user at start-up time, as
acommand-line argument, from an X resourcefile, or from an interactive
dialog box.

For moreinformation about the smc_connect function, seethe Adaptive Server
Enterprise Monitor Client Library Programmer’s Guide.

CHAPTER 5 Monitor Client Library Configuration Instructions

Using Monitor Client Library

Notes

After completing the install ation and setting up the user environment, you can
build and run the sample programs provided. For more details on the sample
programs, see the Adaptive Server Enterprise Monitor Client Library
Programmer’s Guide.

If you have not already done so, read the Adaptive Server Enterprise Monitor
Client Library Release Bulletin for your platform.

e Adaptive Server and Monitor Server must be configured and running on
your network before you run aMonitor Client Library application.

e For maximum responsiveness, Sybase recommends that Monitor Client
applications run on different machines from the one on which Adaptive
Server and Monitor Server are running.

191

Using Monitor Client Library

192

APPENDIX A

Examples of Views

Thisappendix contains examples of views. These views also appear inthe
sample views fileinstalled with Historical Server.

You may find that some of these views collect exactly theinformation that
you areinterested in, while others can serve as templates for building the
views that you need.

Some of the sample viewsdiffer from oneanother only inthetimeinterval
over which the datais accumulated (either the duration of the most recent
sample interval or the entire session). Other views may contain similar
dataitems, but in a different order. The order in which data items appear
inaview issignificant because the data is sorted according to the key
field. Thefirst key field appearsin aview’s definition and acts as the
primary sort key, the second key field isthe secondary sort key, and so on.

#i ncl ude nctpublic.h

SMC vd D

Error Cal | back(

SMC_SI ZET id,

SMC_SI ZET error_nunber,
SMC_SI ZET severity,
SMC_SI ZET map_severity,
SMC Sl ZET source,
SMC_CCHARP error_nsg,
SMC_SI ZET state);

SMC_VA D

Ref r eshCal | back(

SMC _SIZET id,

SMC VA DP user _nsg,
SMC_CHARP nBgQ);

SMC_CHARP

SMC_DATAI TEM NAME val ue);

SMC_CHARP

LookupDat al t enSt at (
SMC_DATAI TEM STATTYPE val ue) ;

193

Cache performance summary

SMC_CHARP
LookupLockResul t (
SMC LOCK_RESULT val ue);

SMC_CHARP
LookupLockResul t Summar y(
SMC_LOCK_RESULT_SUMVARY val ue);

SMC_CHARP
LookupLocksSt at us(
SMC_LOCK_STATUS val ue);

SMC_CHARP
LookupLockType(
SMC LOCK_TYPE val ue);

SMC_CHARP
LookupQCbj ect Type(
SMC_OBJ_TYPE val ue);

SMC_CHARP

LookupPr ocessSt at e(
SMC_PROCESS STATE val ue);
SMC I NT

mai n(

SMC_|I NT ar gc,

SMC CHARP argv[])

{

Cache performance summary

Thisview showsthe overall effectiveness of Adaptive Server cachesduring the
most recent sample interval. It shows the percentage of data page reads that
were satisfied from Adaptive Server data caches and the percentage of requests
for procedure execution that were satisfied from Adaptive Server procedure
cache.

SMC_SI ZET cache_perf_sum count = 2;

SMC_DATAI TEM STRUCT cache_perf_sumview] = {

{ SMC_NAME_PAGE_HI T_PCT, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_STP_HI T_PCT, SMC_STAT_VALUE_SAMPLE }

b

194

APPENDIX A Examples of Views

Current statement summary

This view displays information about the statement that is currently being
executed by Adaptive Server whether it is part of a stored procedure or batch
text. Use aview such asthisif you are trying to determine what an application
isdoing at a particular point in its execution.

SMC_SI ZET cur_stnt_act_count = 11;
SMC_DATAI TEM STRUCT cur _stnt_act _view] = {

B e e e R R e R e e Rt R

SMC_NAVE_SPI D,

SMC_STAT_VALUE_SAMPLE },

SMC_NAVE_CUR STMT_ACT _STP DB ID, SMC_STAT VALUE SAMPLE },
SMC_NAVE_CUR_STMT_ACT_STP_DB_NAME, SMC_STAT VALUE SAMPLE },

SMC_NAVE_CUR_STMT_ACT_STP_I D, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_CUR_STMT_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_CUR_STMT_ACT_STP_TEXT, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_CUR_STMT_BATCH | D, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_CUR_STMT_CONTEXT I D, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_CUR_STMT_NUM SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_CUR_STMT_QUERY_PLAN_TEXT, SMC_STAT VALUE SAMPLE },
SMC_NAVE_CUR_STMT_START_TI ME, SMC_STAT_VALUE_SAMPLE },

Database object lock status

This view shows the status of locks on database objects that are held or being
requested by Adaptive Server processes as of the end of the most recent sample
interval. Each lock isidentified by:

¢ Thename and ID of the object being locked
« Thename and ID of the database that contains that object
¢ The page number to which the lock applies (if it is a page lock)

Each Adaptive Server process associated with the lock isalso identified by its
login name, Process ID and Kernel Process ID. The type of lock is shown,
together with the current status of the lock and an indication of whether or not
thisisademand lock.

If the lock is being requested by the process, the amount of time that this
process has waited to acquire the lock and the Process ID of the process that
already holds the lock are shown. If the process already holds the lock, the
count of other processes waiting to acquire that lock is shown.

195

Database object page 1/0

SMC_SI ZET obj ect _| ock_status_count = 14;
SMC_DATAI TEM STRUCT obj ect | ock_status_view[] = {

SMC_NAVE_LOCKS_BEI NG BLOCKED CNT, SMC_STAT_VALUE_SAMPLE }

{ SMC_NAVE DB _I D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_OBJ_I D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_OBJ_NAME, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAVE_PAGE_NUM SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_LOG N_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPI D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_KPI D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_LOCK_TYPE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCK_STATUS, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_DEMAND LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_TI ME_WAI TED ON_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_BLOCKI NG_SPI D, SMC_STAT_VALUE_SAMPLE },
{

}

Database object page I/O

This view shows the objects in Adaptive Server databases and the page 1/0s
associated with them. It showsthe Adaptive Server database nameand ID, and
the object names and | Ds within each database. For each object, thisview
shows the associated | ogical reads, physical reads, and page writesfor both the
most recent sampleinterval and for the session.

SMC_SI ZET obj ect _page_i o_count = 10;
SMC_DATAI TEM STRUCT obj ect _page_io_view] = {

{ SMC_NAME_DB_I D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_I D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOG CAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_PHYSI CAL_READ, SMC_STAT VALUE_SAMPLE },
{ SMC_NAME_PAGE_WRI TE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_LOG CAL_READ, SMC_STAT_VALUE_SESSI ON },
{ SMC_NAME_PAGE_PHYSI CAL_READ, SMC_STAT VALUE_SESSI ON },
{ SMC_NAME_PAGE_WRI TE, SMC_STAT_VALUE_SESSI ON }
b

196

APPENDIX A Examples of Views

Data cache activity for individual caches

Thisview showsinformation about the performance of individual data caches.

For each named cache, including the default data cache, configured in
Adaptive Server, this view collects the cache’s name and the percentage of
page reads for objects bound to the cache that were satisfied from the cache
since the start of the recording session.

Thisview also shows the:
e Efficiency of the cache’s use of space

* Percentage of times when an attempt to acquire the cache’s spinlock was
forced to wait, since the start of the session

*« Number of cache hits and misses for the session

SMC_SI ZET data_cache_activity_count = 7;
SMC_DATAI TEM STRUCT data_cache_activity__view] = {

{ SMC_NANE_DATA CACHE NAME, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAVME_DATA CACHE I D, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAME_DATA CACHE H T_PCT, SMC_STAT_VALUE_SESSI ON },
{ SMC_NAME_DATA CACHE_EFFI Cl ENCY, SMC_STAT_VALUE_SESSI ON },
{ SMC_NANME_DATA CACHE_CONTENTI ON, SMC_STAT_RATE_SESSI ON },
{ SMC_NAMVE_DATA CACHE HI T, SMC_STAT_VALUE_SESSI ON },
{ SMC_NAME_DATA CACHE M SS, SMC_STAT_RATE_SESSI ON }
b

Data cache statistics for session

Thisview shows the effectiveness of the data caches of Adaptive Server since
the start of the session. It shows the:

¢ Percentage of requestsfor page readsthat were satisfied from cachefor the
session

¢ Number of logical reads, physical reads, and page writes for the session

« Rateof logical reads, physical reads, and page writes for the session

SMC_SI ZET sessi on_page_cache_stats_count = 7,
SMC_DATAI TEM STRUCT sessi on_page_cache_stats view] = {
{ SMC_NAME_PAGE_HI T_PCT, SMC_STAT_VALUE_SESSI ON },

197

Data cache statistics for sample interval

et N e W W W e

SMC_NAVE_PAGE_LOG CAL_READ,
SMC_NAVE_PAGE_LOG CAL_READ,
SMC_NAVE_PAGE_PHYSI CAL_READ,
SMC_NAVE_PAGE_PHYS| CAL_READ,
SMC_NAVE_PAGE_WR! TE,
SMC_NAVE_PAGE_WRI TE,

SMC_STAT_VALUE_SESSI ON },
SMC_STAT_RATE_SESSI ON },
SMC_STAT_VALUE_SESSI ON },
SMC_STAT_RATE_SESSI ON },
SMC_STAT_VALUE_SESSI ON },
SMC_STAT_RATE_SESSI ON }

Data cache statistics for sample interval

Thisview showsthe effectiveness of the data caches of Adaptive Server for the

most recent sample interval. It showsthe:

» Percentage of requestsfor pagereadsthat were satisfied from cachefor the

most recent sample interval

* Number of logical reads, physical reads, and page writes for the most
recent sample interval

» Rateof logical reads, physical reads, and page writes for the most recent

sampleinterval

SMC_SI ZET sanpl e_page_cache_stats_count = 7,
SMC_DATAI TEM STRUCT sanpl e_page_cache_stats_view] = {

i e W e e R

SMC_NAVE_PAGE_HI T_PCT,
SMC_NAVE_PAGE_LOG CAL_READ,
SMC_NAVE_PAGE_LOG CAL_READ,
SMC_NAVE_PAGE_PHYSI CAL_READ,
SMC_NAVE_PAGE_PHYSI CAL_READ,
SMC_NAVE_PAGE_WRI TE,
SMC_NAVE_PAGE_WR! TE,

Device I/O for session

198

This view shows the /O activity that occurred on Adaptive Server database

devices sincethe start of the session. It identifies each device by name. Device
1/O levels are presented in two ways: as counts of total device 1/Os, reads and
writessincethe start of the on, and also asoverall rates of total 1/Os, reads

SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_RATE_SAMPLE 1},
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_RATE_SAMPLE 1},
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_RATE_SAMPLE }

and writes per second since the session began.

APPENDIX A Examples of Views

SMC_SI ZET sessi on_device_i o_count = 7;
SMC_DATAI TEM STRUCT session_device_io view] = {

{ SMC_NAVE_DEV_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_DEV_READ, SMC_STAT_VALUE_SESSI ON },
{ SMC_NAMVE DEV_WRI TE, SMC_STAT_VALUE_SESSI ON },
{ SMC_NAME_DEV_| O SMC_STAT_VALUE_SESSI ON },
{ SMC_NAME_DEV_READ, SMC_STAT_RATE_SESSI ON },
{ SMC_NAME_DEV_WRI TE, SMC_STAT_RATE_SESSI ON },
{ SMC_NAMVE DEV_I O, SMC_STAT_RATE_SESSI ON }
H

Device I/O for sample interval

This view showsthe 1/0 activity that occurred on Adaptive Server database
devices during the most recent sample interval. It identifies each device by
name. Device I/O levels are presented in two ways:. as counts of total device
1/Os, reads and writes during the most recent sample interval, and also asrates
of total 1/Os, reads and writes per second during the sampleinterval.

SMC_SI ZET sanpl e_devi ce_i o_count = 7;
SMC_DATAI TEM STRUCT sanpl e_device_io view] = {

{ SMC_NANME_DEV_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DEV_| O SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVME_DEV_READ, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAMVE DEV_WRI TE, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME DEV_I O, SMC_STAT_RATE_SAMPLE },
{ SMC_NAME_DEV_READ, SMC_STAT_RATE_SAMPLE },
{ SMC_NAMVE_DEV_WRI TE, SMC_STAT_RATE_SAMPLE }
b

Device I/O performance summary

This view shows reads and writes to database devices by Adaptive Server,
since the start of the session. It shows the:

¢ Overdl rate of reads and writes to database devices since the start of the
session

¢ Most active database device for that time period

199

Engine activity

* Rate of reads and writes to the most active device

SMC_SI ZET devi ce_perf_sum count = 3;
SMC_DATAI TEM STRUCT devi ce_perf_sumview] = {

{ SMC_NAVE DEV_I| O SMC_STAT_RATE_SESSI ON },
{ SMC_NAVE_MOST_ACT_DEV_NAME, SMC_STAT_VALUE_SESSI ON },
{ SMC_NAVE_MOST_ACT DEV_I| O SMC_STAT_RATE_SESSI ON }

b

Engine activity

This view showsthe level of activity for each active Adaptive Server engine
during the most recent sampleinterval. Thisview shows, for each engine, the:

» Percentage of the sampleinterval when that engine used the CPU
e Number of lock requests

* Number of logical page reads, physical page reads, and page writes that
were generated by the engine during the sample interval

SMC_SI ZET engi ne_activity_count = 6;
SMC_DATAI TEM STRUCT engi ne_activity view] = {

{ SMC_NAVE_ENG NE_NUM SMC_STAT_VALUE_SAVPLE },
{ SMC_NAME_CPU_BUSY_PCT, SMC_STAT_VALUE_SAVPLE },
{ SMC_NAVE_LOCK_CNT, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_PAGE_LOG CAL_READ, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_PAGE_PHYSI CAL_READ, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_PAGE WRI TE, SMC_STAT_VALUE_SAVPLE }
}

Lock performance summary

This view shows the total number of locks of each type requested and granted
during the most recent sample interval.

SMC_SI ZET | ock_perf_sum count = 3;
SMC_DATAI TEM STRUCT | ock_perf_sumview] = {

{ SMC_NAVE_LOCK_TYPE, SMC_STAT_VALUE_SAVPLE },
{ SMC_NAVE_LOCK_RESULT SUMMVARY, SMC_STAT VALUE_SAVPLE 1},
{ SMC_NAVE_LOCK_CNT, SMC_STAT_VALUE_SAVPLE }

200

APPENDIX A Examples of Views

Network activity for session

This view shows the network activity over all Adaptive Server network
connections since the start of the session. It shows the:

Default packet size

Maximum packet size

Average packet sizes sent and received since the start of the on
Number of packets sent

Number of packets received

Therate at which packets were sent and received

Number of bytes sent

Number of bytes received

Rate at which bytes were sent and received

SMC_SI ZET session_network_activity_count = 12;
SMC_DATAI TEM STRUCT sessi on_network_activity view] = {
SMC_NAME_NET_DEFAULT_PKT_SI ZE, SMC_STAT_VALUE_SAMPLE 1},

e el Rl e R e R e N e N N

SMC_NAVE_NET_MAX_PKT_SI ZE, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_NET_PKT_S| ZE_SENT, SMC_STAT_VALUE_SESSI ON },
SMC_NAVE_NET_PKT_SI ZE_RCVD, SMC_STAT_VALUE_SESSI ON },
SMC_NAVE_NET_PKTS_SENT, SMC_STAT_VALUE_SESSI ON },
SMC_NAVE_NET_PKTS_RCVD, SMC_STAT_VALUE_SESSI ON },
SMC_NAVE_NET_PKTS_SENT, SMC_STAT_RATE_SESSI ON },
SMC_NAVE_NET_PKTS_RCVD, SMC_STAT_RATE_SESSI ON },
SMC_NAVE_NET_BYTES_SENT, SMC_STAT_VALUE_SESSI ON 1},
SMC_NAVE_NET_BYTES_RCVD, SMC_STAT_VALUE_SESSI ON },
SMC_NAVE_NET_BYTES_SENT, SMC_STAT_RATE_SESSI ON },
SMC_NAVE_NET_BYTES_RCVD, SMC_STAT_RATE_SESSI ON }

201

Network activity for sample interval

Network activity for sample interval

This view shows the network activity over al Adaptive Server network
connections during the most recent sample interval. It showsthe:

e Default packet size

e Maximum packet size

* Average packet sizes sent and received for the sample interval
e Number of packets sent

e Number of packetsreceived

» Rate at which packets were sent and received

e Number of bytes sent

e Number of bytesreceived

* Rate at which bytes were sent and received

SMC_SI ZET sanpl e_network_activity_count = 12;
SMC_DATAI TEM STRUCT sanpl e_network_activity view] = {

B i e W e B e e W W e e]

SMC_NAVE_NET_DEFAULT_PKT_SI ZE,
SMC_NAVE_NET_NMAX_PKT_SI ZE,
SMC_NAVE_NET_PKT_S| ZE_SENT,
SMC_NAVE_NET_PKT_SI ZE_RCVD,
SMC_NAVE_NET_PKTS_SENT,
SMC_NAVE_NET_PKTS_RCVD,
SMC_NAVE_NET_PKTS_SENT,
SMC_NAVE_NET_PKTS_RCVD,
SMC_NAVE_NET_BYTES_SENT,
SMC_NAVE_NET_BYTES_RCVD,
SMC_NAVE_NET_BYTES_SENT,
SMC_NAVE_NET_BYTES_RCVD, ,

SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE 1},
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_RATE_SAWPLE },
SMC_STAT_RATE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE 1},
SMC_STAT_RATE_SAMPLE },
SMC_STAT_RATE_SAMPLE }

Network performance summary

This view shows the rate of Adaptive Server activity over all its network
connections during the most recent sampleinterval. It shows the number of
bytes per second that were received by and sent by Adaptive Server during the

202

interval.

APPENDIX A Examples of Views

SMC_SI ZET networ k_perf_sum count = 2;
SMC_DATAI TEM STRUCT networ k_perf_sumview] = {

{ SMC_NAVE_NET_BYTES_RCVD, SMC_STAT_RATE_SAMPLE },
{ SMC_NAVE_NET_BYTES_SENT, , SMC_STAT_RATE_SAMPLE }
H

Procedure cache statistics for session

This view shows the effectiveness of the procedure cache of Adaptive Server
since the start of the session. It shows the:

e Percentage of requestsfor stored procedure executions that were satisfied
by the procedure cache

¢ Number of logical readsand physical reads of stored procedures since the
start of the session

¢ Overdl rate of logical and physical reads of stored procedures since the
start of the session

SMC_SI ZET sessi on_procedure_cache_stats_count = 5;
SMC_DATAI TEM STRUCT sessi on_procedure_cache_stats_view] = {

SMC_NAVE_STP_HI T_PCT, SMC_STAT_VALUE_SESSI ON },
SMC_NAVE_STP_LOG CAL_READ,, SMC_STAT VALUE_SESSI ON },
SMC_NAVE_STP_LOG CAL_READ, SMC_STAT_RATE_SESSI ON 1},

SMC_NAVE_STP_PHYSI CAL_READ, SMC_STAT VALUE_SESSI ON },
SMC_NAVE_STP_PHYSI CAL_READ, SMC_STAT RATE_SESSI ON }

B e L e e R

Procedure cache statistics for sample interval

This view shows the effectiveness of the procedure cache of Adaptive Server
for the most recent sample interval. It shows the:

* Percentage of requestsfor stored procedure executions that were satisfied
by the procedure cache for the most recent sampleinterval

¢ Number of logical reads and physical reads of stored procedures during
the most recent sample interval

203

Procedure page /0

« Rateof logical and physical reads of stored procedures for the most recent
sampleinterval

SMC_SI ZET sanpl e_procedure_cache_stats_count = 5;

SMC_DATAI TEM STRUCT sanpl e_procedure_cache_stats_view] = {
SMC_NAME STP_HI T_PCT, SMC_STAT_VALUE_SAMPLE 1},
SMC_NAMVE STP_LOG CAL_READ, SMC_STAT_VALUE_SAMPLE },
SMC_NAMVE STP_LOG CAL_READ, SMC_STAT_RATE_SAMPLE },
SMC_NANME_STP_PHYSI CAL_READ, SMC_STAT_VALUE_SAMPLE },
SMC_NANVE_STP_PHYSI CAL_READ, SMC_STAT_RATE_SAMPLE }

R e N Wt W

Procedure page I/O

This view shows page I/0Os that occurred while running stored procedures
during the most recent sample interval. For each stored procedure that
generated page 1/0s during the sampleinterval, it shows the stored procedure
name and ID, together with the name and ID of the database that contains the
procedure. If page 1/0Os were produced when no stored procedure was active,
those I/Os are associated with procedure ID and database | D values of zero.

This view also shows, on a per stored procedure level:
e Total page I/Os

» Percentage of pagel/O requeststhat could be satisfied by Adaptive Server
data caches

* Number of logical reads, physical reads, and page writes generated while
executing the stored procedures during the most recent sampleinterval.

SMC_SI ZET procedur e_page_cache_i o_count = 9;
SMC_DATAI TEM STRUCT procedure_page_cache_io_view] = {

SMC_NAVE_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_ACT_STP DB I D, SMC_STAT_VALUE_SAMPLE 1},
SMC_NAVE_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE 1},
SMC_NAVE_ACT_STP_I D, SMC_STAT_VALUE_SAMPLE 1},
SMC_NAVE_PAGE_I O, SMC_STAT_VALUE_SAMPLE 1},
SMC_NAVE_PAGE_HI T_PCT, SMC_STAT_VALUE_SAMPLE 1},

SMC_NAVE_PAGE_LOG CAL_READ, SMC_STAT VALUE_SAMPLE 1},
SMC_NAVE_PAGE_PHYSI CAL_READ, SMC_STAT VALUE_SAMPLE 1},
SMC_NAVE_PAGE_WRI TE, SMC_STAT_VALUE_SAVPLE }

B e W e et R W

204

APPENDIX A Examples of Views

Process activity

This view shows the CPU use, page I/Os, and current process state for all
processes in Adaptive Server.

For each process in the most recent sample interval it shows the:
¢ Login name

e ProcessID

e Kernel Process|D

e Current process state.

The view also presents each process's connect time, total page 1/0s and CPU
usage time, accumul ated since the start of the session.

SMC_SI ZET process_activity_count = 7;
SMC_DATAI TEM STRUCT process_activity viewW] = {
SMC_NANVE LOG N_NANE, SMC_STAT_VALUE_SAMPLE },

B e L R R R R e

SMC_NAVE_SPI D,
SMC_NAVE_KPI D,

SMC_STAT_VALUE_SAMPLE 1},
SMC_STAT_VALUE_SAMPLE 1},

SMC_NAVE_CONNECT Tl ME, SMC_STAT_VALUE_SESSI ON },

SMC_NAMVE_PAGE_| O,
SMC_NAVE_CPU_TI ME,

SMC_NAVE_CUR_PROC_

SMC_STAT_VALUE_SESSI ON },
SMC_STAT_VALUE_SESSI ON },
STATE, SMC_STAT_VALUE_SAMPLE }

Process database object page 1/O

This view shows the page 1/0Os by database object for each Adaptive Server
process. For each process that had page I/Os during the most recent sample
interval it shows the:

¢ Login name
e Process|D
¢ Kernel Process|D

For each such process and for each database object it accessed, the view shows
the:

¢ Object name
e ObjectID

205

Process detail for locks

Database name and 1D
Page 1/0Os

The view also shows the total page 1/Os, the percentage of page I/0 requests
that could be satisfied by Adaptive Server cache, and the number of logical
reads, physical reads, and page writes for the most recent sample interval.

SMC_SI ZET process_obj ect _page_i o_count = 13;
SMC_DATAI TEM STRUCT process_obj ect _page_io_view] = {

SMC_NAME_SPI D,
SMC_NAME_KPI D,
SMC_NAME_DB_NAME,
SMC_NAME_DB_| D,
SMC_NANME_OBJ_NAME,
SMC_NAME_OBJ_I D,
SMC_NAME_OBJ_TYPE,
SMC_NAME_PAGE_I O

R e e W e W e e Wt W e]

SMC_NAVE_LOG N_NAME,

SMC_NAVE_PAGE_HI T_PCT,
SMC_NAVE_PAGE_LOG CAL_READ, SMC_STAT_VALUE_SAMPLE },
SMC_NAVE_PAGE_PHYSI CAL_READ, SMC_STAT VALUE_SAMPLE },
SMC_NAVE_PAGE_WRI TE,

SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },

SMC_STAT_VALUE_SAMPLE }

Process detail for locks

Thisview showsthe status of locks held or being requested by Adaptive Server
processes as of the end of the most recent sampleinterval. Each lock is
identified by:

206

Login name

Process ID

Kernel Process ID of the Adaptive Server process associated with the lock
Name and ID of the object being locked

Name and ID of the database that contains that object

Page number to which the lock applies (if it is a page lock)

Current status of each lock

Indication of whether or not thisis ademand lock

APPENDIX A Examples of Views

If thelock is being requested by the process, the amount of time that this
process has waited to acquire the lock and the Process ID of the process that
holds the lock are shown. If the process holds the lock, the count of other
processes waiting to acquire that lock is shown.

SMC_SI ZET process_detail _| ocks_count = 13;
SMC_DATAI TEM STRUCT process_detail | ocks_view] = {

{ SMC_NAVE_LOG N_NANE, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAVME_SPI D, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAVNE_KPI D, SMC_STAT_VALUE_SAWPLE },
{ SMC_NANME_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_DB_|I D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_OBJ_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_OBJ I D, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAMVE_PAGE_NUM SMC_STAT_VALUE_SAWPLE },
{ SMC_NAME_LOCK_STATUS, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAVE_DEMAND LOCK, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAME_TI ME_WAI TED_ON_LOCK, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_BLOCKI NG_SPI D, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_LOCKS_BEI NG BLOCKED CNT, SMC_STAT_VALUE_SAMPLE }
H

Process detail page I/O

This view shows the page 1/0Os for each Adaptive Server processin detail. It
shows the following as of the end of the most recent sample interval:

¢ Login name
e Process|D
¢ Kernel Process|D

* Process state and current engine are shown for each Adaptive Server
process

The view shows the percentage of page I/O requests that could be satisfied by
Adaptive Server data caches, both for the sampleinterval and since the start of
the session. It also showsthe number of logical reads, physical reads, and page
writes since the start of the session.

SMC_SI ZET process_detail _io_count = 12;

SMC_DATAI TEM STRUCT process_detail _io_ view] = {

{ SMC_NAME_LOG N_NAME, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_SPI D, SMC_STAT_VALUE_SAMPLE 1},

207

Process locks

SMC_NAVE_PAGE_LOG CAL_READ, SMC_STAT VALUE_SESSI ON },
SMC_NAVE_PAGE_PHYSI CAL_READ, SMC_STAT VALUE_SESSI ON },
SMC_NAVE_PAGE_WR! TE, SMC_STAT_VALUE_SESSI ON }

{ SMC_NAVE_KPI D, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAVE_CUR PROC_STATE, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAVE_CUR ENG NE, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAVE_CONNECT_TI ME, SMC_STAT_VALUE_SESSI ON },
{ SMC_NAVE_CPU_TI ME, SMC_STAT _VALUE_SESSI ON },
{ SMC_NAVE_PAGE_HI T_PCT, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAVE_PAGE_HI T_PCT, SMC_STAT_VALUE_SESSI ON },
{

{

{

}

Process locks

This view shows the count of lock requests for every processin Adaptive
Server that generated lock requests during the most recent sample interval.

SMC_SI ZET process_| ock_count = 4;
SMC_DATAI TEM STRUCT process_lock_view] = {

{ SMC_NAME_LOG N_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPI D, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAME_KPI D, SMC_STAT_VALUE_SAWPLE },
{ SMC_NAME_LOCK_CNT, SMC_STAT_VALUE_SAMPLE }
b

Process page I/O

This view summarizes the page 1/0s for each Adaptive Server process for the
most recent sample. For each process in Adaptive Server that generated page
I/Os during the interval, it shows the login name, Process ID, and Kernel
Process ID.

This view also shows, for each process:
e Total page I/Os

» Percentage of pagel/O requeststhat could be satisfied by Adaptive Server
data caches

* Number of logical reads, physical reads, and writes for the most recent
sample interval

208

APPENDIX A Examples of Views

SMC_SI ZET process_page_i o_count = 8;
SMC_DATAI TEM STRUCT process_page_io_view] = {

{ SMC_NAME_LOG N_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_SPI D, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_KPI D, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_PAGE | O SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_PAGE_HI T_PCT, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_PAGE_LOG CAL_READ, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_PAGE_PHYSI CAL_READ, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_PAGE_WRI TE, SMC_STAT_VALUE_SAMPLE }
}

Process state summary

Thisview shows the number of processesthat werein each process state at the
end of the most recent sample interval.

SMC_SI ZET process_perf_sum count = 2;

SMC_DATAI TEM STRUCT process_perf_sumview] = {

{ SMC_NAME_PROC_STATE, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAME_PROC_STATE_CNT, SMC_STAT_VALUE_SAMPLE }

h

Process stored procedure page I/O

Thisview shows the page I/Os associated with stored procedure executions by
Adaptive Server processes. It shows the login name, Process ID, and Kernel
Process ID for each process that generated page 1/0Os during the sample
interval.

For each process and stored procedure that generated page 1/Os, it shows the
name and | D of the database that contains the stored procedure, and the name
and ID of the procedure.

For the most recent sampleinterval, the view shows the:

e Total pagel/Os

¢ Percentage of page I/0 requests that could be satisfied from data caches
* Number of logical reads, physical reads, and page writes

209

Server performance summary

SMC_SI ZET process_procedure_page_i o_count = 12;
SMC_DATAI TEM STRUCT process_procedure_page_io_view] = {

{ SMC_NAVE_LOG N_NAME, SMC_STAT_VALUE_SAVPLE },
{ SMC_NAME_SPI D, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_KPI D, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_ACT_STP DB I D, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_ACT_STP_NAME, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAVE_ACT_STP_I D, SMC_STAT_VALUE_SAVPLE 1},
{ SMC_NAME_PAGE | O SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_PAGE_HI T_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_PAGE_LOG CAL_READ, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAVE_PAGE_PHYSI CAL_READ, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_PAGE WRI TE, SMC_STAT_VALUE_SAMPLE }
}

Server performance summary

This view shows overall Adaptive Server performance. It shows the:

* Number of lock requests per second

« Percentage of the sampleinterval when Adaptive Server was busy
e Number of transactions processed per second

* Number of times Adaptive Server detected a deadlock during the most
recent sample interval

SMC_SI ZET server_perf_sum count = 4;
SMC_DATAI TEM STRUCT server _perf_sumview] = {

{ SMC_NAVE_LOCK_CNT, SMC_STAT_RATE_SAMPLE 1},
{ SMC_NAME_CPU_BUSY_PCT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_XACT, SMC_STAT_RATE_SAMPLE 1},
{ SMC_NAVE_DEADLOCK_CNT, SMC_STAT_VALUE_SAMPLE }

b

210

APPENDIX A Examples of Views

Stored procedure activity

This view shows stored procedure activity for procedure statements. Each
statement of any stored procedure that was executed during the most recent
sample interval isidentified by:

¢ Nameand ID of the database that contains the procedure

¢ Nameand ID of the procedure

¢ Relative number of the statement within the stored procedure
¢ Line of the procedure’s text on which the statement begins
The view shows the:

¢ Number of timeseach statement was executed, both during the most recent
sample interval and since the start of the on

¢ Average elapsed time needed to execute the statement, both for the sample
interval and for the session so far

SMC_SI ZET procedure_activity_count = 10;
SMC_DATAI TEM STRUCT procedure_activity view] = {

{ SMC_NAVE_ACT_STP DB | D, SMC_STAT_VALUE_SAMPLE },

{ SMC_NAVE_ACT_STP_DB_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_ACT_STP_I D, SMC_STAT_VALUE SAMPLE },
{ SMC_NAMVE_ACT_STP_NAME, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_STP_LI NE_NUM SMC_STAT_VALUE_SAMPLE },
{ SMC_NAMVE_STP_STMI_NUM SMC_STAT_VALUE_SAMPLE },
{ SMC_NAVE_STP_NUM TI MES_EXECUTED, SMC_STAT VALUE_SAMPLE },
{ SMC_NAVE_STP_NUM TI MES_EXECUTED, SMC STAT VALUE SESSI ON },
{ SMC_NAVE_STP_ELAPSED TI ME, SMC_STAT_AVG SANPLE },

{ SMC_NAVMVE_STP_ELAPSED TI ME, SMC_STAT_AVG_SESSI ON }
I

Transaction activity

This view shows the transaction activity that occurred in the
Adaptive Server, both for the sample interval and the session.

SMC_SI ZET transaction_activity_count = 20;
SMC_DATAI TEM STRUCT transaction_activity view] = {

{ SMC_NANE_XACT, SMC_STAT_VALUE_SAMPLE },
{ SMC_NAME_XACT DELETE, SMC_STAT_VALUE_SAMPLE 1},
{ SMC_NAVME_XACT | NSERT, SMC_STAT_VALUE_SAMPLE },

211

Transaction activity

SMC_NAME_XACT_UPDATE,
SMC_NAME_XACT_UPDATE_DI RECT,
SMC_NANME_XACT,
SMC_NAME_XACT_DELETE,
SMC_NANME_XACT _| NSERT,
SMC_NAME_XACT_UPDATE,
SMC_NAME_XACT_UPDATE_DI RECT,
SMC_NAME_XACT,
SMC_NANME_XACT_DELETE,
SMC_NANME_XACT _| NSERT,
SMC_NANME_XACT_UPDATE,
SMC_NAME_XACT_UPDATE_DI RECT,
SMC_NAME_XACT,
SMC_NAME_XACT_DELETE,
SMC_NANME_XACT _| NSERT,
SMC_NANME_XACT_UPDATE, ,
SMC_NANME_XACT_UPDATE_DI RECT,
; SMC_SI ZET num views = 27;

R e W W e e e e e e Rt Wt W e P

SMC_STAT_VALUE_SAMPLE },
SMC_STAT_VALUE_SAMPLE },
SMC_STAT _VALUE_SESSI ON },
SMC_STAT _VALUE_SESSI ON },
SMC_STAT _VALUE_SESSI ON },
SMC_STAT _VALUE_SESSI ON },
SMC_STAT_VALUE_SESSI ON },
SMC_STAT_RATE_SAMPLE 1},
SMC_STAT_RATE_SAMPLE 1},
SMC_STAT_RATE_SAMPLE 1},
SMC_STAT_RATE_SAMPLE 1},
SMC_STAT_RATE_SAMPLE 1},
SMC_STAT_RATE_SESSI ON },
SMC_STAT_RATE_SESSI ON },
SMC_STAT_RATE_SESSI ON },
SMC_STAT_RATE_SESSI ON },
SMC_STAT_RATE_SESSI ON }

SMC_SI ZET* view_count = (SMC_SI ZET*) nmal |l oc (sizeof (SMC_SI ZET)
* numyviews);
SMC_DATAI TEM STRUCT** view_|ist = (SMC_DATAI TEM STRUCT**)
mal | oc (sizeof (SMC_DATAI TEM STRUCT*) * num.views);
SMC_SI ZET** view_id_handle_list = (SMC_SI ZET**) mal | oc
(sizeof (SMC_SI ZET*) * num.views);
SMC_SI ZET* view.id_ list = (SMC_SIZET*) nalloc
(sizeof (SMC_SIZET) * num.yviews);

SMC SI ZET client _id;

SMC SI ZETP client _id _handle = &client _id;
SMC_SERVER_MODE server _node =
SMC_CHAR server_nanme[40];
SMC_CHAR user _nane[40];
SMC_CHAR password[40];

SMC CHAR interfaces_file[40];

SMC_SERVER M LI VE;

SMC_RETURN_CCDE r et ;

SMC_SI ZET refresh_num view _num col _num row_num

SMC S| ZET num refreshes = 10;

SMC SI ZET row count;

SMC_SI ZETP row_count _handl e = & ow_count;

SMC_DATAI TEM STRUCTP dataitem.|i st;
SMC_DATAI TEM NAME dat ai t em nane;

212

APPENDIX A Examples of Views

SMC_CHARP dat ai t em nane_str;
SMC_DATAI TEM STATTYPE dat ai tem st at;
SMC CHARP dataitem stat _str;
SMC_DATAI TEM TYPE dat ai tem t ype;

SMC_VALUE_UNI ON dat a_uni on;

SMC_VALUE_UNI ONP dat a_uni on_handl e = &dat a_uni on;
SMC_CHARP data_str;

SMC I NT ival;

1 tf "**\ " .
prin n");

printf("** Test Driver for SQL Monitor Cient Library **\n");
printf("**\n")-
if (argc !=5)
{
printf(Usage: testcli <SQLMonitorServer> <user> <password>
<"interfaces_file>\n");
exit(l);
}

strcpy(server_nane, argv[1]);
strcpy(user_nanme, argv[2]);
strcpy(password, argv[3]);
strcpy(interfaces_file, argv[4]);

for(view nune0Q; view _nunmknum. vi ews; Vi ew_numk+)

{

view_ id_handle list[viewnum] = & view.id list[viewnum]);

}

view count [0] = cache_perf_sum count;
viewlist [0] = cache_perf_sumyview,

view count [1] = object_lock_status_count;
view list [1] = object_lock_status_view,

view count [2] = object_page_io_count;

view list [2] = object_page_io_view,

view count [3] = session_page_cache_stats_count;
view list [3] = session_page_cache_stats_view,
view count [4] = sanpl e_page_cache_stats_count;
view list [4] = sanple_page_cache_stats_view,
view count [5] = session_device_io_count;
view list [5] = session_device_io_view

view count [6] = sanple_device_io_count;

view list [6] = sanple_device_io_view

view count [7] = device_perf_sum count;

view list [7] = device_perf_sumyview,

view count [8] = engine_activity_count;

213

Transaction activity

view list [8] = engine_activity_ view,

view count [9] = lock_perf_sumcount;

view list [9] = lock_perf_sumview

view count [10] = session_network_activity_count;
view list [10] = session_network_activity_view
view count [11] = sanple_network_activity_count;
view list [11] = sanple_network_activity_view,

view count [12] = network_perf_sum count;

view list [12] = network_perf_sumview,

view count [13] = session_procedure_cache_stats_count;
view |list [13] = session_procedure_cache_stats_view,
view count [14] = sanpl e_procedure_cache_stats_count;
view list [14] = sanple_procedure_cache_stats_view,
view count [15] = procedure_page_cache_i o_count;
view list [15] = procedure_page_cache_io_view,

view count [16] = process_activity_count;

view |list [16] = process_activity_view,

view count [17] = process_object_page_i o_count;
view list [17] = process_object_page_i o_view,

view count [18] = process_detail _| ocks_count;

view list [18] = process_detail _| ocks_view

view count [19] = process_detail _io_count;

view list [19] = process_detail _io_view

view count [20] = process_| ock_count;

view list [20] = process_l ock_view

view count [21] = process_page_i o_count;

view list [21] = process_page_io_view,

view count [22] = process_perf_sum count;

view list [22] = process_perf_sumyview,

view_count [23] = process_procedure_page_i o_count;
view list [23] = process_procedure_page_i 0_vi ew
view count [24] = server_perf_sum count;

view list [24] = server_perf_sumyview,

view count [25] = procedure_activity_count;

view list [25] = procedure_activity_view,

view count [26] = transaction_activity_count;

view list [26] = transaction_activity_view

printf("xx*xrxkrxx testing snc_connect () R AN | B I
ret = snct_connect (server_node

server_nane,

user _nane,

password

interfaces_file,

Er r or Cal | back,

0,

214

APPENDIX A Examples of Views

0,
client_id_handle);
if (ret '= SMC RET_SUCCESS)
{
printf("error returned by snc_connect()\n");
return (int) ret;
}

el se

{

printf("snc_connect () succeeded\n");
}
printf("xx*rrxkrxx testing snc_create_view) FrEkxkxkkkxE\n");
for(view nune0Q; Vview _nunmknum. Vi ews; Vi ew_num++)
{
ret = snc_create_view(client_id,
view |ist][viewnum],
view_count[view num],
(SMC_CHARP) O,
view_ id_handle_list[view num]);
if (ret !'= SMC RET_SUCCESS)

{

printf("error returned by snc_create_view(%)\n",

Vi ew_nunj ;

return (int) ret;
}
el se
{

printf("snc_create_view(%) succeeded\n", view nun);
}

}

printf("xx*rrxkrxx testing snc_refresh() FrEkxxxkFxE\ ")
for(refresh_nunme0; refresh_nunknumrefreshes; refresh_numt+)
{
ret = snc_refresh(client_id,
(SMC_Vva DP) O,
Ref reshCal | back,
0);
if (ret !'= SMC RET_SUCCESS)
{
printf("error returned by snc_refresh() number %\ n",
refresh_nun;
return (int) ret;
}

el se

{

printf("snc_refresh() nunber %l succeeded\n", refresh_num;

215

Transaction activity

216

}

for(view _nun=0; view nunknum Vi ews; Vi ew_numt+)

{

printf("*x**** testing snc_get _row count () FrxExxE\n");
ret = snc_get_row count(client_id,
view id_list[viewnum],
row_count _handl e);
if (ret !'= SMC RET_SUCCESS)
{
printf("error returned by snc_get_row count()\n");
return (int) ret;
}
el se
{
printf("snt_get_row count(view.id = %l) = %l\n",
view id_list[viewnun], row _count);
}

dataitemlist = view |list[view num;

/* print dataitem name headers */

for(col _num = 0; col _nunkvi ew_count[view num]; col_numt+)

{
dataitem nane = (dataitemlist[col _nuni).dataltemNaneg;
datai tem nanme_str = LookupDataltemNane(dataitem nane);
printf("Col % %\t", col_num dataitemnane_str);

}

printf("\n");

/* print dataitem stattype headers */

for(col _num= 0; col _nunxview count[view num]; col_numt+)

{
dataitem stat = (dataitemlist[col_num). dataltenttatType;
dataitem stat_str = LookupDataltenftat(dataitemstat);
printf("Col % %\t", col_num dataitemstat_str);

}

printf("\n");

for(row num= 0; row _nunmkrow count; row numk+)

for(col _num = 0; col _nunmkvi ew_count[view num];
col _numt+)

{

dat ai t em nane

(dataitemlist[col _nuni).dataltenNane;

dataitemstat = (dataitemlist[col_num).dataltenStatType;

APPENDIX A Examples of Views

dat ai tem nane_str = LookupDataltemNane(dataitem nane);
ret = snt_get_dataitemvalue(client_id,
view id_list[view num],
&(dataitem|ist[col _nuni),
row_num
dat a_uni on_handl e) ;
if (ret !'= SMC RET_SUCCESS)
{
printf("error returned by snc_get_dataitemval ue()\n");
return (int) ret;

}

snt_get _dataitemtype(& dataitemlist[col_num),
&dataitemtype);

switch(dataitemtype)
{
case SMC DI _TYPE CHARP:
printf("Col %:
\"%\"\t", col _num dat a_uni on. stringVal ue);
free(data_union.stringValue);
br eak;
case SMC DI _TYPE DOUBLE:
printf("Col %:
%\t", col _num data_uni on. doubl eVal ue);
br eak;
case SMC DI _TYPE_ENUVES:
i val = data_union.intVal ue;
switch (dataitem nane)
{
case SMC_NAME_LOCK RESULT_SUMVARY:
data_str = LookupLockResul t Summary(
((SMC_LOCK_RESULT_SUMVARY) ival));
printf("Col %l: \"%\"\t",col _num data_str);
br eak;
case SMC NAME LOCK RESULT:
data_str = LookupLockResult(
((SMC_LOCK_RESULT) ival));
printf("Col %l: \"%\"\t",col _num data_str);
br eak;
case SMC NAME LOCK STATUS:
data_str = LookupLockSt at us(
((SMC_LOCK_STATUS) ival));
printf("Col %l: \"%\"\t",col _num data_str);
br eak;
case SMC NAMVE LOCK TYPE:

217

Transaction activity

data_str = LookupLockType(((SMC_LOCK TYPE)

ival));

printf("Col %l: \"%\"\t",col _num data_str);

br eak;
case SMC NAMVE OBJ TYPE:

data_str = LookupObj ect Type(((SMC_OBJ_TYPE)

ival));

printf("Col %: \"%\"\t",col _num data_str);

br eak;
case SMC_NAME_CUR_PROC _STATE:
case SMC NAME PROC STATE:
data_str = LookupProcessSt at e(

((SMC_PROCESS_STATE) ival));

printf("Col %: \"%\"\t",col _num data_str);

br eak;
defaul t:

printf("Col %l: \"ERRwith %\"\t", col _num

dat ai tem name_str);
}
br eak;
case SMC DI _TYPE LONG
printf("Col %: %\t", col _num
dat a_uni on. | ongVal ue) ;
br eak;
case SMC DI _TYPE_DATI M
case SMC DI _TYPE_NONE:
defaul t:

printf("Col %l: \"ERR with o%\"\t",

dat ai tem name_str);

}

}
printf("\n");
}
}
}

printf("xx*xrxkrxx testing snc_di sconnect ()
ret = snct_di sconnect(client_id);
if (ret !'= SMC_RET_SUCCESS)

col _num

**********\n") .
’

{
printf("error returned by snt_disconnect()\n");
return (int) ret;

}

{
printf("snt_disconnect () succeeded\n");

}

218

APPENDIX A Examples of Views

free(view count);
free(view list);

return O;

}

SMC_ VO D

Error Cal | back(

SMC_SI ZET id,

SMC_SI ZET error_nunber,
SMC_SI ZET severity,
SMC_SI ZET map_severity,
SMC_SI ZET sour ce,
SMC_CCHARP error_mnsg,
SMC_SI ZET state

)

{
printf("**\n");
printf("Inside ErrorCallback()\n");
printf("id = %\ n", id);
printf("error_nunmber = %l\n", error_nunber);
printf("err severity = %\ n", severity);
printf("map severity = %\ n", nmap_severity);
printf("source = %\ n", source);
printf("error nsg = %\n", error_nsg);
printf("state = %\ n", state);
printf("**\n");
return;

}

SMC_ VO D

Ref r eshCal | back(
SMC_SI ZET id,
SMC_ VO DP user _nsg,
SMC_CHARP nsg

)

pl’l ntf("**\n");

printf("Inside RefreshCallback()\n");

{

printf("id = %\ n", id);
printf("user_nsg = %\n", (SMC_CHARP) user_nsgQ);

219

Transaction activity

printf("nmsg = %\n", nsQ);

return;

}

SMC_

CHARP

LookupDat al t emNane(
SMC_DATAI TEM NAME val ue

)
{

typedef struct {

SMC_CHARP str_nane;
SMC_DATAI TEM NAME enum _nane;

} DATAI TEM NAVE_NAPPER;

DATAI TEM NAVE_MAPPER datai tem name_map[] = {

{ "Process ID", SMC_NAME_SPI D 1},

{ "Kernel Process ID', SMC_NAME_KPI D },

{ "Cache Nane", SMC_NAME_DATA_CACHE_NAME 1},

{ "Database |ID", SMC_NAME DB ID },

{ "Object 1D, SMC_NAME_OBJ_I D },

{ "Procedure Database |ID', SMC_ NAME_ACT_STP_DB ID },

{ "Procedure |D", SMC_NAMVE_ACT_STP_I D },

{ "Procedure Line Nunmber", SMC_ NAVE_STP_LI NE_NUM },

{ "Lock Type", SMC_NAME_LCCK_TYPE },

{ "Lock Result", SMC_NAME_LOCK_RESULT 1},

{ "Lock Results Summarized", SMC NAVE LOCK RESULT_SUMVARY 1},
{ "Lock Status", SMC_NAME_LOCK_STATUS 1},

{ "Engi ne Nunber", SMC_NAME_ENG NE_NUM },

{ "Page Nunber", SMC_NAVE_PAGE_NUM },

{ "Device Nane", SMC_NAME_DEV_NAME },

{ "Process State", SMC_NAME_PROC_STATE 1},

{ "Login Nane", SMC_NAME_LOG N_NAME 1},

{ "Database Nane", SMC_NAVE_DB_NAME },

{ "Omner Nane", SMC_NAVE_OMNER_NAME 1},

{ "Object Nane", SMC_NAVE_OBJ_NAME },

{ "Object Type", SMC_NAME_OBJ_TYPE 1},

{ "Procedure Database Nane", SMC_ NAVE_ACT_STP_DB_NAME 1},
{ "Procedure Oaner Nane", SMC_NAME_ACT_STP_OMER_NAME 1},
{ "Procedure Nane", SMC_NAME_ACT_STP_NAME },

{ "Blocking Process I D', SMC_NAME _BLOCKI NG _SPI D },

{ "Cache Efficiency", SMC_NAVE_DATA CACHE_EFFI Cl ENCY 1},
{ "Cache H't Pct", SMC_NAME_DATA _CACHE _HI T_PCT 1},
{ "Cache Hts", SMC_NAME_DATA CACHE HI T },

{ "Cache M sses", SMC_NAME_DATA CACHE M SS 1},

{

220

"Cache Spinlock Contention", SMC_NAVE DATA CACHE CONTENTI ON },

APPENDIX A Examples of Views

e R R e e R R

"Connect Tinme", SMC_NAME_CONNECT_TI ME },

"CPU Busy Percent", SMC_NAME_CPU _BUSY_PCT 1},

"CPU Percent", SMC_NAME_CPU_PCT 1},

"CPU Tinme", SMC_NAMVE_CPU_TI ME },

"Current Engi ne", SMC_NAME_CUR_ENG NE 1},

"Current Process State", SMC_ NAME_CUR PROC STATE },
"Deadl ock Count", SMC_NAME_DEADLOCK_CNT 1},
"Denmand Lock", SMC_NAME_DENMAND _LOCK 1},

"Device Hits", SMC_NAVE DEV H T },

"Device Hit Percent", SMC NAME DEV H T_PCT },

"Device |/ 0O, SMC_NAMVE DEV_| O },

"Device M sses", SMC_NAME_DEV_M SS 1},

"Devi ce Reads", SMC_NAME_DEV_READ 1},

"Device Wites", SMC_NAMVE_DEV_WRI TE },

"Lock Count", SMC_NAME_LOCK_CNT 1},

"Lock Ht Percent", SMC_NAMVE_LOCK_HI T_PCT },

"Lock Status Count", SMC_NAME_LOCK_STATUS_CNT 1},
"Locks Being Bl ocked Count", SMC_NAME LOCKS_BEI NG BLOCKED_CNT 1},
"Code Menory Size", SMC_NAME_MEM CODE_SI ZE 1},
"Kernel Structures Menory Size", SMC_ NAVE_MEM KERNEL_STRUCT_SI ZE 1},
"Page Cache Size", SMC_NAME_MEM PAGE_CACHE_SI ZE 1},

"Procedure Buffer Size", SMC_ NAVE MEM PROC BUFFER 1},
"Procedure Header Size", SMC_ NAVE MEM PROC HEADER 1},

"Server Structures Size", SMC_ NAVE_MEM SERVER STRUCT_SI ZE },
"Most Active Device I/0O', SMC_NAME _MOST_ACT DEV_ IO},

"Most Active Device Nane", SMC_NAVE_MOST_ACT_DEV_NAME 1},

"Net 1/0O Bytes", SMC_NAMVE_NET_BYTE_ | O },
"Net Bytes Received", SMC_NAME NET_BYTES RCVD },
"Net Bytes Sent", SMC_NAME_NET_BYTES_SENT 1},

"Net Default Packet Size",SMC NAME NET_DEFAULT PKT_SI ZE },
"Net Max Packet Size", SMC_NAME NET_MAX PKT_SI ZE },

"Net Packet Size Received", SMC NAME_NET_PKT_SI ZE RCVD },
"Net Packet Size Sent", SMC_NAME _NET_PKT_SI ZE_SENT },

"Net Packets Received", SMC_NAME _NET_PKTS RCVD },

"Net Packets Sent", SMC_NAVE_NET_PKTS_SENT 1},
"Page Ht Percent", SMC_NAMVE_PAGE_HI T_PCT },

"Logi cal Page Reads", SMC NAME PAGE LOG CAL_READ 1},
"Page |/ 0", SMC_NAME_PACE_| O },

"Physi cal Page Reads", SMC_NAME_PAGE_PHYSI CAL_READ },
"Page Wites", SMC_NAMVE_PAGE_WRI TE 1},
"Process State Count", SMC_NAME_PROC STATE CNT },

"Ti mest anp”, SMC_NAME_TI MESTAMP },

"El apsed Ti ne", SMC_NAVME_ELAPSED TI ME 1},

"SQL Server Nane", SMC_NAME_SQL_SERVER_NAME 1},

"SQ. Server Version", SMC NAME SQL_SERVER VERSI ON },
"Procedure El apsed Tinme", SMC_ NAVE_STP_ELAPSED TI ME },

221

Transaction activity

"Procedure Hit Percent", SMC NAME STP_H T_PCT },
"Procedure Line Text", SMC_NAME _STP_LI NE_TEXT },
"Procedure Execution Count", SMC_NAMVE _STP_NUM Tl MES_EXECUTED 1},
"Procedure Logi cal Reads", SMC NAME_STP_LOGd CAL_READ },
"Procedure Physical Reads", SMC NAME_STP_PHYSI CAL_READ },
"Time Waited on Lock", SMC_NAME TI ME_WAI TED_ON_LOCK 1},
"Transactions", SMC_NAME_XACT 1},

"Rows Del eted", SMC_NAME_XACT_DELETE 1},

"Rows I nserted Cl ustered", SMC_ NAVE XACT_CI NSERT },

"Rows | nserted", SMC_NAME_XACT_I NSERT 1},

"Rows | nserted Noncl ustered", SMC_ NAVE_XACT_NCI NSERT 1},
"Rows Updat ed", SMC_NAME_XACT_UPDATE 1},

"Rows Updated Directly", SMC NAVE XACT_UPDATE DI RECT },

(SMC_CHARP) 0, SMC_NAME_NONE }

B e e R e e e e R R e e e e

SMC | NT idx = O;
SMC_BOOL mat ch = FALSE;
whil e(match == FALSE)

if (value == dataitemnnane_nmap[idx].enum.nane)
return dataitemname_map[idx].str_nane;

if (dataitemname_map[idx].enumnane == SMC NAME_NONE)
return dataitemname_nap[idx].str_nane;

i dx++;
}
}

SMC_CHARP
LookupDat al t entt at (
SMC DATAI TEM STATTYPE val ue

)

{
typedef struct {

SMC_CHARP str_stat;
SMC_DATAI TEM STATTYPE enum st at ;
} DATAI TEM STAT_NAPPER;

DATAI TEM STAT_MAPPER dataitemstat_map[] = {

{ "Value for Sanple", SMC_STAT_VALUE_SAMPLE 1},
{ "Value for Session", SMC_STAT_VALUE_SESSI ON },
{ "Rate for Sanple", SMC_STAT_RATE_SAMPLE 1},

{ "Rate for Session", SMC_STAT_RATE_SESSI ON 1},

222

APPENDIX A Examples of Views

{ "Avg for Sanple", SMC_STAT_AVG SAMPLE },
{ "Avg for Session", SMC_STAT_AVG SESSI ON 1},
{ (SMC_CHARP)O0,0 }
}

SMC_| NT idx = 0;
SMC_BOOL mat ch = FALSE;

whil e(match == FALSE)

{
if (value == dataitemstat_map[idx].enumstat)
return dataitemstat_nmap[idx].str_stat;
if (dataitemstat_map[idx].enumstat == 0)
return dataitemstat_map[idx].str_stat;
I dx++;
}
}
SMC_CHARP

LookupLockResul t (
SMC_LOCK_RESULT val ue
)
{
typedef struct {
SMC_CHARP str_|lock _res;
SMC LOCK RESULT enum | ock_res;
} LOCK_RESULT_NAPPER;

LOCK_RESULT_MAPPER | ock_result_map[] = {

{ "granted", SMC_LOCK_R_GRANTED 1},

{ "not needed", SMC_LOCK_R_NOTNEEDED 1},
{ "waited", SMC_LOCK_R WAI TED },

{ "didntwait", SMC LOCK_R DI DNTWAIT },
{ "deadl ock", SMC_LOCK_R _DEADLOCK 1},

{ "interrupted", SMC_LOCK_R_| NTERRUPTED} ,
{ (SMC_CHARP)O, O }

}

SMC | NT idx = 0;

SMC_BOOL mat ch = FALSE;

whil e(match == FALSE)
{

223

Transaction activity

if (value
return | ock_result_map|

if (lock_result_map[
return | ock_result_map[

| ock_result_

idx].enuml ock_res

map[idx].enumlock res)
idx].str_lock_res;

0)
idx].str_lock_res;

i dx++;
}
}
SMC_CHARP
LookupLockResul t Sunmar y(
SMC_LOCK_RESULT_SUMVARY val ue
)
{
typedef struct ({
SMC_CHARP str_lock _ressum
SMC LOCK RESULT _SUMMARY enum | ock_ressum
} LOCK_RESULT_SUMVARY_NAPPER;
LOCK_RESULT_SUMMARY_MAPPER | ock_result _summary_map[] = {
{ "granted", SMC_LOCK_RS_GRANTED 1},
{ "notgranted", SMC LOCK_RS_NOTGRANTED 1},
{ (SMC_CHARP)O, 0 }
b
SMC_| NT idx = 0;
SMC_BOOL mat ch = FALSE;
whil e(match == FALSE)
if (value == lock_result_summary_nap[idx].enum.l|ock_ressum)
return lock_result_sunmary_map[idx].str_|lock_ressum
if (lock_result_summary_nap[idx].enuml|ock_ressum== 0)
return lock_result_sunmary_map[idx].str_|lock_ressum
i dx++;
}
}
SMC_CHARP

LookupLocksSt at us(
SMC_LOCK_STATUS
)

{
typedef struct {

val ue

224

APPENDIX A Examples of Views

}

SMC_CHARP str_|l ock_st at us;
SMC_LOCK_STATUS enum | ock_st at us;
} LOCK_STATUS_ NAPPER;

LOCK_STATUS_MAPPER | ock_status_map[] = {

{ "hel d_bl ocki ng", SMC_LOCK_S HELD BLOCKI NG 1},

{ "hel d_not bl ocki ng", SMC_LOCK_S HELD NOTBLOCKI NG },

{ "requested_bl ocked", SMC_LOCK_S REQUESTED_BLOCKED 1},

{ "requested_not bl ocked", SMC LOCK_S REQUESTED NOTBLCCKED 1},
{ (SMC_CHARP)O, O }

}

SMC_| NT idx = 0;
SMC_BOOL mat ch = FALSE;
whil e(match == FALSE)
{
if (value == lock_status_map[idx].enum.|ock_status)

return | ock_status_map[idx].str_|lock_status;

if (lock_status_map[idx].enumlock _status == 0)
return | ock_status_map[idx].str_|ock_status;

I dx++;

}

SMC_CHARP
LookupLockType(

{

SMC LOCK_TYPE val ue
)

typedef struct {
SMC_CHARP str_l ock_type;
SMC LOCK_TYPE enum | ock_type;
} LOCK_TYPE_MAPPER;

LOCK_TYPE_MAPPER | ock_type_map[] = {

{ "ex_tab", SMC LOCK T _EX TAB },
{ "sh_tab", SMC LOCK T _SH TAB },
{ "ex_int", SMC_ LOCK T _EX_INT },

{ "sh_int", SMC_LOCK_T_SH I NT },

{ "ex_page", SMC_LOCK _T_EX PACGE },

{ "sh_page", SMC_LOCK_T_SH PACE },

{ "upd_page", SMC LOCK T_UP_PACE },

225

Transaction activity

{ (SMC_CHARP)O, 0 }
I

SMC | NT idx = O;
SMC BOOL mat ch = FALSE;

whil e(match == FALSE)

{
if (value == lock_type_map[idx].enum.l ock_type)
return | ock_type_map[idx].str_lock_type;
if (lock_type_map[idx].enumlock type == 0)
return | ock_type _map[idx].str_lock_type;
i dx++;
}

226

APPENDIX B

Datatypes and Structures

Summary of datatypes

Table B-1 lists Monitor Client Library type constants with descriptions
and their corresponding C or Open Client datatypes.

Table B-1: Summary of datatypes

Monitor Client Library datatype

Description

Corresponding
C or Open
Client datatype

SMC_ALARM_ACTION_TYPE

Specifies the type of action to take when an alarm
istriggered

None

SMC_ALARM_ID Alarm identifier size t
SMC_ALARM_IDP Pointer to alarm identifier size t*
SMC_BOOL Boolean int

SMC_CHAR Character char
SMC_CHARP Character pointer char*
SMC_CHARPP Pointer to character pointer char**
SMC_CCHARP Constant character pointer CS _CONST char*

SMC_CLOSE_TYPE

Specifies an option when closing a Adaptive
Server Enterprise Monitor connection

None

SMC_COMMAND_ID Command identifier size t
SMC_COMMAND_IDP Pointer to command identifier size t*
SMC_CONNECT _ID Connection identifier size t
SMC_CONNECT_IDP Pointer to connection identifier size t*
SMC_DATETIME Date and time CS _DATETIME
SMC_DATAITEM_NAME Identifies a particular piece of performance data None
that Monitor Client Library isto obtain
SMC_DATAITEM_NAMEP Pointer to SMC_DATAITEM_NAME None
SMC _DATAITEM_STATTYPE Identifies what normalization, if any, Monitor None
Client Library should perform on data
SMC _DATAITEM_STRUCT Identifies data that Monitor Client Library isto None
obtain
SMC_DATAITEM_STRUCTP Pointer to SMC_DATAITEM_STRUCT None

227

Summary of datatypes

Monitor Client Library datatype

Description

Corresponding
C or Open
Client datatype

SMC_DATAITEM_TYPE

Identifies datatype of datathat Monitor Client
Library obtains

None

SMC_DATAITEM_TYPEP Pointer to SMC_DATAITEM_TYPE None
SMC_DOUBLE Double precision floating point double
SMC_DOUBLEP Pointer to double precision double*
SMC_ERR_SEVERITY Indicates the degree of severity of an error None
SMC _FILTER ID Filter identifier size t
SMC_FILTER_IDP Pointer to filter identifier size t*
SMC_FILTER_TYPE Specifies the type of filter to create with None
smc_create_filter
SMC_HS ESTIM_OPT Specifies whether, in playback of historical None
performance data, to authorize estimation of data
that cannot be calculated reliably from the
available recorded data
SMC_HS MISSDATA_OPT Specifies whether, in playback of historical None
performance data, a sample should be returned for
aperiod of time for which no datais available
SMC_HS PLAYBACK_OPT Specifies whether playback of historical None
performance data should be normalized or
summarized or both
SMC_HS SESS DELETE_OPT Specifies whether to delete data files associated None
with a Historical Server session
SMC_HS SESS ERR_OPT Specifies whether arecording session should None
continue after an error
SMC_HS SESS PROT_LEVEL Specifies whether the datain arecording session ~ None
should be accessible to other users
SMC_HS SESS SCRIPT_OPT Specifies whether to create ascript to createtables None
corresponding to the views in arecording session
SMC_HS TARGET_OPT Specifies whether playback of historical None
performance data should be sent to the client
application, or used to create a new session
SMC_INFO_TYPE Specifiesthetypeof informationtorequestinacall None
to smc_get_command_info
SMC_INT Integer int
SMC_INTP Pointer to integer int*
SMC_LOCK_RESULT | dentifies the possible outcomes of alock request None
SMC_LOCK_RESULT_SUMMARY I dentifies the two major categories of outcomesof None

228

alock request

APPENDIX B Datatypes and Structures

Monitor Client Library datatype

Description

Corresponding
C or Open
Client datatype

SMC_LOCK_STATUS

Identifies the possible statuses of alock or lock
request

None

SMC_LOCK_TYPE Identifies the granularity and exclusivity of alock None
SMC_LONG Long long
SMC_LONGP Pointer to long long*
SMC_OBJ TYPE Identifies the type of an object in an Adaptive None
Server database
SMC_PROC_STATE Identifies the possible statuses of an Adaptive None
Server process
SMC_PROP_ACTION Specifiesthe action to take in acall to None
smc_connect_props
SMC_PROP_TYPE Specifies the property that isthe object of acall to None
smc_connect_props
SMC_RETURN_CODE Indicates whether a Monitor Client Library None
operation succeeded, and, if not, what error
occurred
SMC_SERVER_MODE Specifies whether a Adaptive Server Enterprise None
Monitor connection isto obtain live performance
data or whether to manipulate historical data
SMC_SESSION_ID Session identifier size t
SMC_SESSION_IDP Pointer to session identifier size t*
SMC_SIZET unsigned integer size t
SMC_SIZETP Pointer to unsigned integer size t*
SMC_SOURCE Indicates the software layer that detected an error None
SMC_VALUE_UNION Structure containing data None
SMC_VALUE_UNIONP Pointer to SMC_VALUE_UNION None
SMC _VIEW_ID View identifier size t
SMC_VIEW_IDP Pointer to view identifier size t*
SMC_VOID Void void
SMC_VOIDP Pointer to void void*

Therest of thisappendix describesindividual datatypesthat have no equival ent
in C or Open-Client Client Library.

229

Enum: SMC_ALARM_ACTION_TYPE

Enum: SMC_ALARM_ACTION_TYPE

An enum to identify the type of action taken when an alarmistriggered:

Table B-2: Alarm action type

SMC_ALARM_A_EXEC_PROC

SMC_ALARM_A_LOG_TO FILE

SMC_ALARM_A_NOTIFY

Enum: SMC_CLOSE_TYPE

An enum used to identify the extent of a close command:

Table B-3: Close type

SMC_CLOSE_REQUEST

Enum: SMC_DATAITEM_NAME

An enum used in conjunction with smc_create_view to specify performance
data. See Chapter 2, “Data ltems and Statistical Types” for alist of the
available dataitems.

Enum: SMC_DATAITEM_STATTYPE

An enum used in conjunction with smc_create_view to identify statistical type
and accumulation interval of performance data.

Table B-4: Data item statistical type

SMC_STAT VALUE_SAMPLE

SMC_STAT VALUE_SESSION

SMC_STAT RATE_SAMPLE

SMC_STAT_RATE_SESSION

SMC_STAT AVG_SAMPLE

SMC_STAT_AVG_SESSION

230

APPENDIX B Datatypes and Structures

Structure: SMC_DATAITEM_STRUCT

A structure used in conjunction with smc_create_view to identify performance

data.
typedef struct SMC_DATAITEM_STRUCT{
SMC _DATAITEM_NAME dataltemName
SMC DATAITEM_STATTYPE dataltemSatType

} SMC_DATAITEM_STRUCT;

Enum: SMC_DATAITEM_TYPE

An enum used in conjunction with smc_get_dataitem_type to identify physical
type of performance data results:

Table B-5: Data item type

SMC_DI_TYPE_NONE

SMC_DI_TYPE_CHARP

SMC_DI_TYPE_DATIM

SMC_DI_TYPE_DOUBLE

SMC_DI_TYPE_ENUMS

SMC_DI_TYPE_INT

SMC _DI_TYPE_LONG

Enum: SMC_ERR_SEVERITY

An enum used in conjunction with smc_get_command_info to identify the
severity of an error, warning, or informational notification.

Table B-6: Error severity
SMC_ERR_SEV_INFO
SMC_ERR_SEV_WARN
SMC_ERR_SEV_FATAL

231

Enum: SMC_FILTER_TYPE

Enum: SMC_FILTER_TYPE

An enum to identify the types of filters:

Table B-7: Filter type

SMC FILT_T_EQ

SMC_FILT_T_NEQ

SMC FILT T_GE

SMC FILT T _LE

SMC FILT_T_GE_AND_LE

SMC_FILT T_TOP N

Enum: SMC _HS ESTIM_OPT

An enum to specify whether to allow certain datato be estimated during a
playback session.

Table B-8: Historical Server error action
SMC _HS ESTIM_ALLOW

SMC_HS_ESTIM_DISALLOW

Enum: SMC_HS_MISSDATA_OPT

An enum to specify what action Historical Server should takeif agiven sample
during a playback session has no performance data to play back:

Table B-9: Historical Server missing data option

SMC_HS_MISSDATA_SHOW

SMC_HS_MISSDATA_SKIP

Enum: SMC_HS_PLAYBACK_OPT

An enum to specify whether datafor a playback on should be normalized,
summarized, or both.

232

APPENDIX B Datatypes and Structures

Table B-10: Historical Server protection level
SMC_HS PBTYPE ENTIRE

SMC_HS PBTYPE ACTUAL

SMC_HS PBTYPE_INTERVAL

SMC_HS PBTYPE_RAW

Enum: SMC_HS_SESS_DELETE_OPT

An enum to specify whether to delete data files associated with a Historical
Server connection.

Table B-11: Historical Server file deletion option
SMC_HS SESS DELETE_FILES
SMC_HS SESS RETAIN_FILES

Enum: SMC_HS SESS ERR _OPT

An enum to specify what action Historical Server should take if arecording
session encounters non-fatal errors:

Table B-12: Historical Server error option

SMC_HS SESS ERR_CONT

SMC_HS SESS ERR_HALT

Enum: SMC_HS_SESS PROT_LEVEL

An enum to specify the protection level for access to performance data
recorded by Historical Server:

Table B-13: Historical Server protection level

SMC_HS SESS PROT_PRIVATE

SMC_HS SESS PROT_PUBLIC

233

Enum: SMC_HS_SESS_SCRIPT_OPT

Enum: SMC_HS_SESS_SCRIPT_OPT

An enum to specify the type of script (if any) that Historical Server should
create to help the user to manipulate the performance data of a recording
session:

Table B-14: Historical Server script option

SMC_HS_SESS _SCRIPT_SYBASE

SMC_HS_SESS_SCRIPT_NONE

Enum: SMC_HS TARGET_ OPT

An enum to specify whether the playback session will return data to the
application or whether playback will create anew session on Historical Server:

Table B-15: Historical Server script option

SMC_HS _TARGET_CLIENT

SMC_HS TARGET FILE

Enum: SMC_HS TARGET_ OPT

An enum to specify the destination of datain a playback session:

Table B-16: Historical Server playback target option

SMC_HS TARGET CLIENT

SMC_HS TARGET FILE

Enum: SMC_INFO_TYPE

An enum to identify the various pieces of datathat are available for querying
from a callback function, using smc_get_command_info:

Table B-17: Information type

SMC_INFO_ALARM_ACTION_DATA

SMC_INFO_ALARM_ALARMID

234

APPENDIX B Datatypes and Structures

SMC_INFO_ALARM_CURRENT_VALUE

SMC_INFO_ALARM_DATAITEM

SMC_INFO_ALARM_ROW

SMC_INFO_ALARM_THRESHOLD_VALUE

SMC_INFO_ALARM_TIMESTAMP

SMC_INFO_ALARM_VALUE_DATATY PE

SMC_INFO_ALARM_VIEWID

SMC_INFO_ERR_MAPSEVERITY

SMC_INFO_ERR_MSG

SMC_INFO_ERR_NUM

SMC_INFO_ERR_SEVERITY

SMC_INFO_ERR_SOURCE

SMC_INFO_ERR_STATE

Enum: SMC_LOCK_RESULT

An enum to identify results of alock request:

Table B-18: Lock result type
SMC_LOCK_R_GRANTED
SMC_LOCK_R_NOTNEEDED
SMC_LOCK_R_WAITED
SMC_LOCK_R_DIDNTWAIT
SMC_LOCK_R_DEADLOCK
SMC_LOCK_R_INTERRUPTED

Enum: SMC_LOCK_RESULT_SUMMARY

An enum to identify whether the lock request was granted or not granted:

Table B-19: Lock result summary type

SMC_LOCK_RS GRANTED

SMC_LOCK_RS NOTGRANTED

235

Enum: SMC_LOCK_STATUS

Enum: SMC_LOCK_STATUS

An enum to identify the status of alock:

Table B-20: Lock status type

SMC_LOCK_S HELD_BLOCKING

SMC_LOCK_S HELD_NOTBLOCKING

SMC_LOCK_S REQUESTED BLOCKED

SMC_LOCK_S REQUESTED _NOTBLOCKED

Enum: SMC_LOCK_TYPE

An enum to identify lock types:
Table B-21: Lock type

SMC_LOCK_T_EX_TAB

SMC_LOCK_T_SH_TAB

SMC_LOCK_T_EX_INT

SMC_LOCK_T_SH_INT

SMC_LOCK_T_EX_PAGE

SMC_LOCK_T_SH_PAGE

SMC_LOCK_T_UP_PAGE

Enum: SMC_OBJ_TYPE

An enum to identify object types:
Table B-22: Object type

SMC_OBJ T_STP

SMC_OBJ T_TBL

Enum: SMC_PROC_STATE

An enum to identify process states:

236

APPENDIX B Datatypes and Structures

Table B-23: Process state

SMC_PROC_STATE_ALARM_SLEEP

SMC_PROC_STATE_BACKGROUND

SMC_PROC_STATE_BAD_STATUS

SMC_PROC_STATE_INFECTED

SMC_PROC_STATE_LOCK_SLEEP

SMC_PROC_STATE_RECV_SLEEP

SMC_PROC_STATE_RUNNABLE

SMC_PROC_STATE_RUNNING

SMC_PROC_STATE_SEND_SLEEP

SMC_PROC_STATE_SLEEPING

SMC_PROC_STATE_STOPPED

SMC_PROC_STATE_TERMINATING

SMC_PROC_STATE_YIELDING

SMC_PROC_STATE_REMOTE_|O

SMC_PROC_STATE_SYNC_SLEEP

Enum: SMC_PROP_ACTION

An enum used to identify the desired action of an smc_connect_props function
call:

Table B-24: Connection property action
SMC_PROP_ACT_SET

SMC_PROP_ACT_GET

SMC_PROP_ACT_CLEAR

Enum: SMC_PROP_TYPE

An enum used to identify the property to operate onin acall to
smc_connect_props:

Table B-25: Connection property

SMC_PROP_APPNAME

SMC_PROP_ERROR_CALLBACK

237

Enum: SMC_RETURN_CODE

SMC_PROP _IFILE

SMC_PROP_LOGIN_TIMEOUT

SMC_PROP_PACKETSIZE

SMC_PROP_PASSWORD

SMC_PROP_SERVERMODE

SMC_PROP_SERVERNAME

SMC_PROP_TIMEOUT

SMC_PROP_USERDATA

SMC_PROP_USERNAME

Enum: SMC_RETURN_CODE

238

An enum to identify the types of return codes:
Table B-26: Return codes

SMC_RET_SUCCESS

SMC_RET_FAILURE

SMC_RET_INSUFFICIENT_MEMORY

SMC_RET_CONNECTION_ERROR

SMC_RET_UNABLE_TO_CONNECT _TO_SMS

SMC_RET_UNABLE_TO_CONNECT TO_SS

SMC_RET_MISSING_RESULT_TABLE

SMC_RET_INVALID_USER_PASSWD

SMC_RET_INVALID_PARAMETER

SMC_RET_INVALID_CACHE

SMC_RET_INVALID_DCID

SMC_RET_INVALID_COMMAND

SMC_RET_INVALID_VIEWID

SMC_RET_INVALID_DINAME

SMC_RET_INVALID_DISTAT

SMC_RET_INVALID_DI_STRUCT

SMC_RET_DI_STAT_MISMATCH

SMC_RET_INVALID_DI_COMBO

SMC_RET_INVALID_DATATYPE

SMC_RET_INVALID_VALUE_COUNT

SMC_RET_INVALID_FILTER_VALUE

APPENDIX B Datatypes and Structures

SMC_RET_INVALID_FILTER_RANGE
SMC_RET_DATAITEM_CONTAINS FILTER
SMC_RET_INVALID_COMPOSITE_FILTER
SMC_RET_INVALID_SVR_MODE
SMC_RET_MISSING_DATAITEM
SMC_RET_INVALID_FILTERID
SMC_RET_INVALID_ALARMID
SMC_RET_INVALID_ALARM_VALUE
SMC_RET_INVALID_DINAME_FOR_ALARM
SMC_RET_INVALID_API_FUNC_SEQUENCE
SMC_RET_INVALID_API_FUNCTION
SMC_RET_INVALID_PROPERTY
SMC_RET_INVALID_INFOTYPE
SMC_RET_CONNECT_NOT_CLOSED
SMC_RET_ARITHMETIC_OVERFLOW
SMC_RET_LOGIN_LACKS SA_ROLE
SMC_RET_INTERNAL_ERROR

Enum: SMC_SERVER_MODE

An enum to identify the types of Adaptive Server Enterprise Monitor
connections:

Table B-27: Server mode type
SMC_SERVER_M_LIVE
SMC_SERVER_M_HISTORICAL

Enum: SMC_SOURCE

An enum used in conjunction with ErrorCallback to identify the source of an
error, warning or informational notification.

Table B-28: Error source

SMC_SRC_UNKNOWN

SMC_SRC_HS

239

Union: SMC_VALUE_UNION

SMC_SRC_SMC

SMC_SRC CT

SMC_SRC_SS

SMC_SRC_SMS

Union: SMC_VALUE_UNION

A unionusedin conjunctionwithsmc_connect_props, smc_get_command_info,
and smc_get_dataitem_value to set and retrieve results.

typedef union SMC_VALUE_UNION {

SMC_INT intValue
SMC_LONG longValue
SMC_DOUBLE doubleVvalue
SMC_SIZET sizetValue
SMC_CHARP stringValue
SMC_VOIDP voidp\Value
SMC_DATETIME datetimeValue

} SMC_VALUE_UNION;

240

APPENDIX C

Backward Compatibility

Monitor Client Library version 11.5 and later replaces several API
functions. The new API and callback functions provide improved features
and extensibility. Replaced APl and callback functions have been
preserved within the library for backwards compatibility.

Obsolete and replacement functions

Table C-1 maps obsolete Monitor Client Library functionsto their
replacement functions:
Table C-1: Obsolete functions and replacement functions
Obsolete Replacement
smc_change_error_handler smc_connect_props

smc_connect smc_connect_alloc
smc_connect_props
smc_connect_ex

smc_create_alarm smc_create_alarm_ex

smc_disconnect smc_close
smc_connect_drop

smc_refresh smc_refresh_ex

The most significant syntactic difference between the obsolete and
replacement functions is the callback function parameter. In earlier
versions, SMC_CALLBACK, SMC_ALARM_CALLBACK, and
SMC_ERR_CALLBACK were used to specify a callback function. These
callback function types are have been replaced by SMC_GEN_CALLBACK.

Note The new refresh function, smc_refresh_ex, does not use any
callback function, unlike the obsolete smc_refresh.

241

New functions

In addition to changing the callback function types, smc_connect and
smc_disconnect have been replaced by a set of functionsthat allow for greater
flexibility and control.

New functions
Table C-2 lists the new functions.

Table C-2: New functions

smc_create_playback_session

smc_get_command_info

smc_initiate_playback

smc_terminate_playback

smc_terminate_recording

Note New functions cannot be used with obsolete functions.

Rules for functions and callbacks compatibility

Use the following rules to decide which functions and callbacks can be used
together:

* If you are using any new or replacement functions, do not use obsolete
functions.

* If you are using obsolete functions, use the obsol ete error callback
function types.

e If you are using replacement or new functions, use the version 11.1 error
callback function types.

* You can use unchanged functions with all other types of functions.

242

appennpix o Iroubleshooting Information
and Error Messages

This appendix contains two sections.

e “Troubleshooting” lists problems that you may encounter using
Monitor Client Library, but that do not have specific error messages.

e “Error Messages’ describes error messages that you may receive.

Troubleshooting

Confusing messages from If you create aview that requires information from a database that needs
Adaptive Server to be recovered, you get error messages from Adaptive Server rather than
aconcise error message from Monitor Client Library.

View refreshes fail e Ifyoutry torefresh aview at the same time as someone creates a
database, the refresh may fail.

e A refresh for aview may fail if one or more databases on Adaptive
Server are in single user mode.

Negative numbers as If you create aview using the SMC_NAME_OBJ ID dataitem, you
object IDs might see negative numbers as object | Ds. Negative object IDs are an
accurate reporting of 1Ds as assigned by Adaptive Server.

Monitor Server reportson all activity, including activity on temporary
tables that Adaptive Server creates to perform a complex query. The
object IDsthat Adaptive Server assigns to temporary tables can be
positive or negative. The object ID that was assigned by Adaptive Server
is reported.

Inviewsthat show SMC_NAME_OBJ NAME, the string **TempObject**
isreported for temporary tables.

243

Error messages

Error messages

Monitor Client Library isan Open Server application that usesthe Open Client
Library to communicate with Adaptive Server and Monitor Server. Any of
these components can detect and report errors conditions. Monitor Client
Library also detects and reports error conditions, which it logs or reports or
both to clients.

The following building, linking, and compiling error messages may be
reported. They are listed here in alphabetical order.

Communication failure: check if server is running.

Whilerunning testmon.exe, one of the following conditions caused the error to
be reported:

e Server names are incorrect in example.h.

e gglini fileismissing.

« ggl.ini file hasincorrect network connection information.
e Adaptive Server is not running.

e Historical Server isnot running.

e User nameisincorrectly set in example.h.

e Password for the user name isincorrectly set in example.h.

Configuration failure: possibly missing interfaces file or bad login

parameters.

244

Whilerunning testmon.exe, one of the following conditions caused the error to
be reported:

e Server names are incorrect in example.h.

e glini fileismissing.

e ggl.ini file hasincorrect network connection information.
e Adaptive Server is not running.

e Historical Server isnot running.

e User nameisincorrectly set in example.h.

APPENDIX D Troubleshooting Information and Error Messages

e Password for the user name isincorrectly set in example.h.

Don’t know how to build example.h

While building testmon.exe, one of the following conditions caused the
compile error to be reported:

¢ Project needsto rebuild all dependencies.
e Project’'sinclude file path needs the location of the file names.

¢ Default location would be C:\SYBASE\INCLUDE and
C:\SYBASE\MONCLT\SAMPLE.

error L2029: ‘SMC_CONNECT’ : unresolved external

While building testmon.exe, the following condition caused thelink error to be
reported:

e smcapi32.lib needs to be included as one of the librariesin which to link.
It islocated by default in C:\SYBASE\MONCLT\LIB.

error L2029: ‘SMC_CREATE_VIEW’ : unresolved external

While building testmon.exe, the following condition caused thelink error to be
reported:

¢ You need to include smcapi32.lib as one of the librariesin which to link.
It islocated by default in C:\SYBASE\MONCLT\LIB.

fatal error C1083: Cannot open include file: ‘cstypes.h’: No such file
or directory

While building testmon.exe, one of the following conditions caused the
compile error to be reported:

¢ Project needsto rebuild all dependencies.

¢ Project’'sinclude file path needs the location of the file names.

245

Error messages

+ Default location would be C:\SYBASE\INCLUDE and
C:\SYBASE\MONCLT\SAMPLE.

fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such
file or directory

While building testmon.exe, the following condition caused the compile error
to be reported:

* Project’sinclude path for the preprocessor needsto be edited to the correct
setting. It is currently set to C:\SYBASE\MONCLT\INCLUDE;
C:\SYBASE\INCLUDE.

LINK: fatal error L4051: smcapi32.lib : cannot find library

While building testmon.exe, the following condition caused thelink error to be
reported:

* Theproject’s Library File's path needs to include the location of
smcapi 32.lib, which is assumed to bein C:\SYBASE\MONCLT\LIB.

246

Index

A Monitor Server 3
activit SQL Server 3
|r\]/c|)r¥e 45 SQL Server Monitor 2
connecting
3:280allback syntax 143 e 6
adding 125 Concf;i(;l:n s
callback functions 11, 128 9

creating 125,131

deallocating 125, 132
establishing 125, 134
initialize playback 125

creating 140
removing 125
retrieveinformation 162

sett! ng 11 Monitor 131
dlocating .
. properties 135, 140
connection structure 6 .
reusng 13

application programming interface 2 setting properties 125

architecture .
; connection structure
» ;a%l(_3 Server Monitor 2 alocaing 6
isti deallocating 13
ﬁatlstlstt:aalt_gpef 8 connections
N titonot o summaries 46
definitionof 9 !
creating
filters 10
C
calculation D
stetistical type 8]
callback function 11, 128 detaitem
celli defined 43
“ ”:jg ; 175 definition 7
Skl nmas dataitem statistical type 8
client connection 6 !
dinfotypes 129, 165 data item type
commen ' returning 125
command structure :
desllocating 13 data items
d listof 47
commlan Z resultandkey 43
Isq'|' 179 retrieving 126
COTJIC:I\“I ;g 180 SMC_NAME_ACT_STP. DB ID 49
Wind 182 SMC NAME_ACT _STP DB NAME 50
o SMC NAME_ACT STPID 50
configuring & - ALL_ ol |

SMC_NAME_ACT_STP_NAME 51

247

Index

SMC NAME_ACT _STP_ OWNER NAME 51
SMC NAME_APP_EXECUTION_CLASS 52
SMC NAME_APPLICATION_NAME 52
SMC_NAME_BLOCKING_SPID 53
SMC_NAME_CONNECT_TIME 54
SMC_NAME_CPU_BUSY_PCT 54
SMC NAME CPU PCT 55
SMC NAME _CPU TIME 55
SMC NAME CPU YIELD 56
SMC_NAME_CUR_APP_NAME 56
SMC_NAME_CUR_ENGINE 56
SMC_NAME_CUR_EXECUTION_CLASS 57
SMC NAME _CUR PROC STATE 57
SMC NAME CUR STMT ACT STP DB ID 58
SMC NAME _CUR STMT_ACT_STP DB _NAME
59
SMC_NAME_CUR_STMT_ACT_STP_ID 59
SMC_NAME_CUR_STMT_ACT_STP_NAME 60
SMC NAME _CUR _STMT_ACT_STP_ OWNER_NA
ME 60
SMC NAME CUR STMT_ACT _STP TEXT 61
SMC_NAME_CUR_STMT_BATCH_ID 61
SMC_NAME_CUR_STMT_BATCH_TEXT 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLE
D 62
SMC NAME _CUR STMT _CONTEXT_ID 63
SMC NAME _CUR STMT _CPU TIME 63
SMC NAME CUR STMT _ELAPSED TIME 63
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS GRANTED_IM
MED 65
SMC NAME DATA CACHE HIT PCT 71
SMC NAME DATA CACHE ID 71
SMC NAME DATA CACHE NAME 74
SMC_NAME_LOCK_RESULT_SUMMARY 86
SMC_NAME_LOCK_STATUS 86
SMC_NAME_LOCK_STATUS CNT 87
SMC _NAME LOCKS BEING BLOCKED_CNT
88
SMC NAME _OBJ NAME 101
SMC_NAME_OWNER_NAME 101
SMC_NAME_PROC_STATE_CNT 107
datarefresh 12,173
deallocating
connection structure 13
detail

248

specifyinginview 43
details
server-wide data 44

E

empty rows 45

views,in 45

error handler 127

error handling 127

error messages

callback function 128
Monitor Historical Server 244
error notification 162

F

filters

adding 125, 144
creating 10
removing 125, 160
types 10
function summary 126
functions

using threads 126

G

graphical user interface 2

H

Historical Server 2,3
cancel session 175
isgl interfaceto 4
Monitor Client Library and 4
playback in 4

information types 129, 165

Index

callback data 129
isgl
Historical Severand 4

K

key dataitems
defined 43

L

linking 179
UNIX 180
Windows 183

M

Monitor Client Library 2
definitionof 1
Historical Serverand 4
playback 4
properties 138
relationship to Monitor Server 3

Monitor Historical Server
connection 125
definitionof 2
messages 244

Monitor Server 2
summaries 46

Monitor Viewer 2

O

Open Server 2

P

performance 3
performancedata 12
playback 4

conclude definition 126

concludesession 174
creatingasession 148
endingasession 126
initializing 125
program structure
closing connections 13
connectingtoaserver 6
creating filters 10
creating views 7
deallocating connections 13
setting dlarms 11

properties

clearing 140

connection 140
retrieving 140
setting 140

R

rate

statistical types 8
recording

conclude definition 126
creatingasession 154
initializing 125
initiating session 172
recording, initiating 126
refreshdata 12, 173
reopen aconnection 13
result data items
defined 43
returnvalues 127
row count
retrieving 126
rows
empty 45

S
sample
statistical types 8
sample applications 179
UNIX 182
Windows 184

249

Index

servers

connectingto 6

logginginto 7
server-wide data

detailsof 44
session

cancelling 175

statistical types 8
session, creating 125
setting

aams 11
shared memory 3
smc close 125, 130
smc_connect_alloc 125, 131

see also connection structure 6
smc_connect_drop 125, 132
smc_connect_ex 7, 13, 125, 133
smc_connect_props 6, 125, 135
smc_create darm 11
smc _create dlarm_ex 125, 140
smc_create filter 10, 125, 144
smc_create playback_session 125, 148
smc_create recording_session 125, 153
smc_create view 9, 125, 156
smc_drop_alarm 125, 158
smc_drop_filter 125, 160
smc_drop_view 125, 161
smc_get_command_info 125, 162
smc_get_dataitem_type 125, 165
smc_get_dataitem_value 12, 126, 166
smc_get_row_count 12, 126, 168
smc_get_version_string 126, 169
smc_initiate_playback 126
smc_initiate recording 126, 172
SMC_NAME_ACT_STP DB_ID 49

SMC_NAME_ACT_STP DB_NAME 50

SMC_NAME_ACT _STP ID 50
SMC_NAME_ACT_STP NAME 51

SMC_NAME_ACT_STP OWNER _NAME 51
SMC_NAME_APP_EXECUTION_CLASS 52
SMC_NAME_APPLICATION_NAME 52

SMC_NAME_BLOCKING_SPID 53
SMC_NAME_CONNECT TIME 54
SMC_NAME_CPU_BUSY PCT 54
SMC_NAME_CPU PCT 55
SMC_NAME_CPU_TIME 55

250

SMC NAME CPU YIELD 56
SMC NAME _CUR APP_ NAME 56
SMC NAME_CUR ENGINE 56
SMC_NAME_CUR_EXECUTION_CLASS 57
SMC_NAME_CUR_PROC_STATE 57
SMC_NAME_CUR_STMT_ACT_STP DB ID 58
SMC NAME _CUR STMT_ACT_STP DB _NAME
59
SMC NAME CUR STMT ACT STP ID 59
SMC_NAME_CUR_STMT_ACT_STP_NAME 60
SMC_NAME_CUR_STMT_ACT_STP_OWNER_NA
ME 60
SMC NAME CUR STMT_ACT _STP TEXT 61
SMC_NAME_CUR_STMT BATCH_ID 61
SMC_NAME_CUR_STMT_BATCH_TEXT 62
SMC_NAME_CUR_STMT_BATCH_TEXT_ENABL
ED 62
SMC_NAME_CUR_STMT_CONTEXT_ID 63
SMC_NAME_CUR_STMT_CPU_TIME 63
SMC_NAME_CUR_STMT_ELAPSED TIME 63
SMC_NAME_CUR_STMT_LINE_NUM 64
SMC_NAME_CUR_STMT_LOCKS GRANTED_IM
MED 65
SMC_NAME_DATA_CACHE HIT_PCT 71
SMC_NAME _DATA _CACHE ID 71
SMC_NAME_DATA_CACHE_NAME 74
SMC_NAME_LOCK_RESULT_SUMMARY 86
SMC_NAME_LOCK_STATUS 86
SMC_NAME_LOCK_STATUS CNT 87
SMC_NAME_LOCKS BEING_BLOCKED_CNT
88
SMC_NAME_OBJ NAME 101
SMC_NAME_OWNER_NAME 101
SMC_NAME_PROC_STATE_CNT 107
smc_refresh ex 12,126, 173
SMC_STAT_AVG_SESSION
definitionof 9
SMC_STAT_RATE_SAMPLE
definitionof 8
SMC_STAT_RATE_SESSION
definitionof 9
SMC_STAT_VALUE_SAMPLE
definitionof 8
SMC_STAT _VALUE_SESSION
definitionof 8
smc_terminate_playback 126, 174

Index

smc_terminate_recording 175
specifying
detail inview 43
SQL Server Monitor
architecture 2
components 2
definition 1
statistical type 8
structures
allocating a connection structure 6
summaries
connection 46
Sybase Central 3

T
terminating playback 174
testhist 179

threads 126

triggering

aams 11

ty 140

V

vaue

statistical type 8
version number 126

view

contents 44
description 9
views 7

darms 11
amount of detail 43
defining 125
definition 7

dropping 125, 161
empty rows 45
filtersonviews 10
monitor summaries 46
retrieving data 126
sampling data 173

251

Index

252

	Programmer’s Guide
	Monitor Client Library
	About This Book
	Audience
	How to use this book
	Related documents
	Other sources of information
	Sybase certifications on the Web
	For the latest information on product certifications
	For the latest information on EBFs and Updates
	To create a personalized view of the Sybase Web site (including support pages)
	Text conventions
	Command syntax
	Table 1: Command syntax conventions
	If you need help

	CHAPTER 1 Getting started with Monitor Client Library
	Overview
	What is Adaptive Server Enterprise Monitor
	Adaptive Server Enterprise Monitor components
	Adaptive Server Enterprise Monitor architecture
	Figure 1-1: Adaptive Server Enterprise Monitor architecture

	Writing a Basic Monitor Client Library program
	Application logic flow
	Step 1: define error handling
	Step 2: connect to a server
	Allocating a connection structure
	Setting connection structure properties
	Required connection properties
	Connecting to a server

	Step 3: create a view
	Data items
	Statistical types
	Creating views for a connection

	Step 4: create filters
	Step 5: set alarms
	Step 6: request performance data and process results
	Step 7: close and deallocate connections
	Closing and deallocating connections
	Reopening connections

	Playing back recorded data

	A sample Monitor Client Library program
	Example program

	CHAPTER 2 Data Items and Statistical Types
	Overview
	Result and key data items
	Data items and views
	Table 2-1: Examples of data returned by views
	Rows with no data versus no rows in views
	Server-level status
	Combining data items
	Result and key combinations
	Connection summaries
	Current statement and application name data items

	Data item definitions
	Deciphering the names of data items
	SMC_NAME_ACT_STP_DB_ID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_ACT_STP_DB_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ACT_STP_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_ACT_STP_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ACT_STP_OWNER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_APPLICATION_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_APP_EXECUTION_CLASS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_BLOCKING_SPID
	Description
	Version Compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CONNECT_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_BUSY_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CPU_YIELD
	Description
	Version compatibility
	Data item type
	Server level
	Required key
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_APP_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_ENGINE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_EXECUTION_CLASS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_PROC_STATE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes
	Enum

	SMC_NAME_CUR_STMT_ACT_STP_DB_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_DB_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_OWNER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_ACT_STP_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_BATCH_ID
	Description
	Version compatibility
	Data item type
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_BATCH_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_BATCH_TEXT_ENABLED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_CONTEXT_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_CPU_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes:

	SMC_NAME_CUR_STMT_ELAPSED_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LINE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LOCKS_GRANTED_IMMED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LOCKS_GRANTED_WAITED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_LOCKS_NOT_GRANTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_PAGE_WRITE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_QUERY_PLAN_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_START_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_CUR_STMT_TEXT_BYTE_OFFSET
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_CONTENTION
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_EFFICIENCY
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_HIT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_ID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_LARGE_IO_DENIED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_LARGE_IO_PERFORMED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_LARGE_IO_REQUESTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_MISS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_PREFETCH_EFFICIENCY
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_REUSE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_REUSE_DIRTY
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_REF_AND_REUSE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DATA_CACHE_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DB_ID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_DB_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEADLOCK_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEMAND_LOCK
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_HIT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_MISS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_DEV_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_DEV_WRITE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ELAPSED_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_ENGINE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_HOST_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_KPID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_RESULT
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCK_RESULT_SUMMARY
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCK_STATUS
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCK_STATUS_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCK_TYPE
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_LOCKS_BEING_BLOCKED_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCKS_GRANTED_IMMED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCKS_GRANTED_WAITED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOCKS_NOT_GRANTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOG_CONTENTION_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_LOGIN_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_CODE_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_KERNEL_STRUCT_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_PAGE_CACHE_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_PROC_BUFFER
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_PROC_HEADER
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MEM_SERVER_STRUCT_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MOST_ACT_DEV_IO
	Description
	Version compatibility
	Server level
	Data item type
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_MOST_ACT_DEV_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_BYTE_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_BYTES_RCVD
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_BYTES_SENT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_DEFAULT_PKT_SIZE
	Description
	Type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_MAX_PKT_SIZE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKT_SIZE_RCVD
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKT_SIZE_SENT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKTS_RCVD
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NET_PKTS_SENT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NUM_ENGINES
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_NUM_PROCESSES
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_OBJ_ID
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_OBJ_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_OBJ_TYPE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes
	Enum

	SMC_NAME_OWNER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_INDEX_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_INDEX_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_IO
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_PAGE_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PAGE_WRITE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_PROC_STATE
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes
	Enum

	SMC_NAME_PROC_STATE_CNT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_SPID
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_SQL_SERVER_NAME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_SQL_SERVER_VERSION
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_CPU_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_ELAPSED_TIME
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_EXECUTION_CLASS
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_HIT_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_LINE_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_STP_LINE_TEXT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_LOGICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_NUM_TIMES_EXECUTED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_PHYSICAL_READ
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_STP_STMT_NUM
	Description
	Version compatibility
	Data item type
	Server level
	Result data items that require this key
	Result data items for which this key is optional
	Statistic types and datatypes

	SMC_NAME_THREAD_EXCEEDED_MAX
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_THREAD_EXCEEDED_MAX_PCT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_THREAD_MAX_USED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_TIME_WAITED_ON_LOCK
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_TIMESTAMP
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_TIMESTAMP_DATIM
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_DELETE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_DELETE_DEFERRED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_DELETE_DIRECT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_INSERT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_INSERT_CLUSTERED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_INSERT_HEAP
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_SELECT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_DEFERRED
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_DIRECT
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_EXPENSIVE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_IN_PLACE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	SMC_NAME_XACT_UPDATE_NOT_IN_PLACE
	Description
	Version compatibility
	Data item type
	Server level
	Required keys
	Optional keys
	Statistic types and datatypes

	CHAPTER 3 Monitor Client Library Functions
	Table 3-1: Monitor Client Library functions
	Threads
	Error handling
	Table 3-2: Return values

	Error handler
	Callback function
	Accessing callback data
	Table 3-3: Data available for alarm callbacks
	Table 3-4: Data available for error callbacks

	smc_close
	Valid server modes
	Errors

	smc_connect_alloc
	Valid server modes
	Errors

	smc_connect_drop
	Valid server modes
	Errors

	smc_connect_ex
	Valid server modes
	Errors

	smc_connect_props
	Table 3-5: Monitor Client Library connection properties
	Properties
	Valid server modes
	Errors

	smc_create_alarm_ex
	Valid server modes
	Errors
	Callback parameters

	smc_create_filter
	Valid server modes
	Errors

	smc_create_playback_session
	Valid server modes
	�Errors

	smc_create_recording_session
	Valid server modes
	Errors

	smc_create_view
	Valid server modes
	Errors

	smc_drop_alarm
	Valid server modes
	Errors

	smc_drop_filter
	Valid server modes
	Errors

	smc_drop_view
	Valid server modes
	Error

	smc_get_command_info
	Table 3-6: Monitor Client Library command information types
	Valid server modes
	Errors

	smc_get_dataitem_type
	smc_get_dataitem_value
	Errors

	smc_get_row_count
	Valid server modes
	Error

	smc_get_version_string
	smc_initiate_playback
	Valid server modes
	Errors

	smc_initiate_recording
	Valid server modes
	Errors

	smc_refresh_ex
	Valid server modes
	Errors

	smc_terminate_playback
	Valid server modes
	Errors

	smc_terminate_recording
	Valid server modes
	Errors

	CHAPTER 4 Building a Monitor Client Library Application
	Building on UNIX platforms
	Compiling the application
	Linking the application
	Running the application
	Building the sample applications

	Building on Windows platforms
	Compiling the application
	Linking the application
	Running the application
	Building the sample applications

	CHAPTER 5 Monitor Client Library Configuration Instructions
	Loading Monitor Client Library
	Using Studio Installer

	Results of the load
	Confirming your login account and permissions
	Modifying the interfaces file
	Setting up the user environment
	Setting the SYBASE environment variable
	Overriding the default location of the interfaces file

	Using Monitor Client Library
	Notes

	APPENDIX A Examples of Views
	Cache performance summary
	Current statement summary
	Database object lock status
	Database object page I/O
	Data cache activity for individual caches
	Data cache statistics for session
	Data cache statistics for sample interval
	Device I/O for session
	Device I/O for sample interval
	Device I/O performance summary
	Engine activity
	Lock performance summary
	Network activity for session
	Network activity for sample interval
	Network performance summary
	Procedure cache statistics for session
	Procedure cache statistics for sample interval
	Procedure page I/O
	Process activity
	Process database object page I/O
	Process detail for locks
	Process detail page I/O
	Process locks
	Process page I/O
	Process state summary
	Process stored procedure page I/O
	Server performance summary
	Stored procedure activity
	Transaction activity

	APPENDIX B Datatypes and Structures
	Summary of datatypes
	Table B-1: Summary of datatypes

	Enum: SMC_ALARM_ACTION_TYPE
	Table B-2: Alarm action type

	Enum: SMC_CLOSE_TYPE
	Table B-3: Close type

	Enum: SMC_DATAITEM_NAME
	Enum: SMC_DATAITEM_STATTYPE
	Table B-4: Data item statistical type

	Structure: SMC_DATAITEM_STRUCT
	Enum: SMC_DATAITEM_TYPE
	Table B-5: Data item type

	Enum: SMC_ERR_SEVERITY
	Table B-6: Error severity

	Enum: SMC_FILTER_TYPE
	Table B-7: Filter type

	Enum: SMC_HS_ESTIM_OPT
	Table B-8: Historical Server error action

	Enum: SMC_HS_MISSDATA_OPT
	Table B-9: Historical Server missing data option

	Enum: SMC_HS_PLAYBACK_OPT
	Table B-10: Historical Server protection level

	Enum: SMC_HS_SESS_DELETE_OPT
	Table B-11: Historical Server file deletion option

	Enum: SMC_HS_SESS_ERR_OPT
	Table B-12: Historical Server error option

	Enum: SMC_HS_SESS_PROT_LEVEL
	Table B-13: Historical Server protection level

	Enum: SMC_HS_SESS_SCRIPT_OPT
	Table B-14: Historical Server script option

	Enum: SMC_HS_TARGET_OPT
	Table B-15: Historical Server script option

	Enum: SMC_HS_TARGET_OPT
	Table B-16: Historical Server playback target option

	Enum: SMC_INFO_TYPE
	Table B-17: Information type

	Enum: SMC_LOCK_RESULT
	Table B-18: Lock result type

	Enum: SMC_LOCK_RESULT_SUMMARY
	Table B-19: Lock result summary type

	Enum: SMC_LOCK_STATUS
	Table B-20: Lock status type

	Enum: SMC_LOCK_TYPE
	Table B-21: Lock type

	Enum: SMC_OBJ_TYPE
	Table B-22: Object type

	Enum: SMC_PROC_STATE
	Table B-23: Process state

	Enum: SMC_PROP_ACTION
	Table B-24: Connection property action

	Enum: SMC_PROP_TYPE
	Table B-25: Connection property

	Enum: SMC_RETURN_CODE
	Table B-26: Return codes

	Enum: SMC_SERVER_MODE
	Table B-27: Server mode type

	Enum: SMC_SOURCE
	Table B-28: Error source

	Union: SMC_VALUE_UNION

	APPENDIX C Backward Compatibility
	Obsolete and replacement functions
	Table C-1: Obsolete functions and replacement functions

	New functions
	Table C-2: New functions

	Rules for functions and callbacks compatibility

	APPENDIX D Troubleshooting Information and Error Messages
	Troubleshooting
	Confusing messages from Adaptive Server
	View refreshes fail
	Negative numbers as object IDs

	Error messages
	Communication failure: check if server is running.
	Configuration failure: possibly missing interfaces file or bad login parameters.
	Don’t know how to build example.h
	error L2029: ‘SMC_CONNECT’ : unresolved external
	error L2029: ‘SMC_CREATE_VIEW’ : unresolved external
	fatal error C1083: Cannot open include file: ‘cstypes.h’: No such file or directory
	fatal error C1083: Cannot open include file: ‘mcpublic.h’: No such file or directory
	LINK: fatal error L4051: smcapi32.lib : cannot find library

